Chemistry, asked by samsingh2004, 8 months ago

The minimum uncertainty in de-Broglie wavelength of an electron accelerated from rest by a
potential difference of 6.0V, if uncertainty in measuring the position is 1/pie nm, is

(A) 6.25 Å
(B) 6.0 Å
(C) 0.625 Å
(D) 0.3125 Å​

Answers

Answered by nirman95
3

Given:

Electron accelerated from rest by a potential difference of 6.0V, uncertainty in measuring the position is 1/pie nm.

To find:

Minimum uncertainty of De-Broglie wavelength.

Calculation:

Wavelength of the De-Broglie wave is:

 \lambda =  \sqrt{ \dfrac{150}{6} }  =  \sqrt{25}  = 5 \:  {A}^{ \circ}

Now , we know that , De-Broglie wavelength is also given as:

 \therefore \:  \lambda =  \dfrac{h}{p}

 =  > p =  \dfrac{h}{ \lambda}

 =  >  | \Delta p | =  \dfrac{h}{ {\lambda}^{2} }  \times \Delta \lambda

Now , considering Heisenberg's Uncertainty Principle:

 \therefore \: \Delta x \times \Delta p  \geqslant   \dfrac{h}{4\pi}

 =  >  \: \Delta x \times ( \dfrac{h}{{\lambda}^{2} } \times  \Delta \lambda)  \geqslant   \dfrac{h}{4\pi}

 =  >  \:  \dfrac{  {10}^{ - 9} }{\pi}  \times  \bigg \{\dfrac{h}{{(5\times{10}^{-10})}^{2} } \times  \Delta \lambda \bigg \}  \geqslant   \dfrac{h}{4\pi}

 =  >  \:   \bigg \{\dfrac{ {10}^{ - 9} }{{(5\times{10}^{-10})}^{2} } \times  \Delta \lambda \bigg \}  \geqslant   \dfrac{1}{4}

 =  >  \:    \Delta \lambda  \geqslant   \dfrac{2.5}{4}  \times  {10}^{ - 10}

 =  >  \:    \Delta \lambda  \geqslant   0.625  \times  {10}^{ - 10}

 =  >  \:    \Delta \lambda  \geqslant   0.625   {A}^{ \circ}

So, final answer is:

  \boxed{ \bf{\Delta \lambda  \geqslant   0.625   {A}^{ \circ} }}

Similar questions