Math, asked by arjun2003mandal, 2 months ago

The number of common tangerts to
the circles x²+y²_4X-6y - 12=0
and x² + y² + 6x + 18y+26=0 is
(ค)
3
B 4
1
D
2​

Answers

Answered by amansharma264
20

EXPLANATION.

Number of common tangent to the circle.

⇒ x² + y² - 4x - 6y - 12 = 0. - - - - - (1).

⇒ x² + y² + 6x + 18y + 26 = 0. - - - - - (2).

As we know that,

General equation of the circle.

⇒ x² + y² + 2gx + 2fy + c = 0.

From equation (1), we get.

⇒ x² + y² - 4x - 6y - 12 = 0. - - - - - (1).

⇒ Centre of circle = (-g,-f).

⇒ Centre of circle = (2,3).

⇒ Radius of circle = √g² + f² - c.

⇒ Radius of circle = √(2)² + (3)² - (-12).

⇒ Radius of circle = √4 + 9 + 12.

⇒ Radius of circle = √25.

⇒ Radius of circle = 5.

From equation (2), we get.

⇒ x² + y² + 6x + 18y + 26 = 0. - - - - - (2).

⇒ Centre of circle = (-g,-f).

⇒ Centre of circle = (-3,-9).

⇒ Radius of circle = √g² + f² - c.

⇒ Radius of circle = √(-3)² + (-9)² - 26.

⇒ Radius of circle = √9 + 81 - 26.

⇒ Radius of circle = √90 - 26.

⇒ Radius of circle = √64.

⇒ Radius of circle = 8.

⇒ C₁C₂ = √(x₁ - x₂)² + (y₁ - y₂)².

⇒ C₁ = (2,3) & C₂ = (-3,-9).

⇒ C₁C₂ = √[2 - (-3)]² + [3 - (-9)]².

⇒ C₁C₂ = √(2 + 3)² + (3 + 9)².

⇒ C₁C₂ = √(5)² + (12)².

⇒ C₁C₂ = √25 + 144.

⇒ C₁C₂ = √169.

⇒ C₁C₂ = 13.

⇒ r₁ + r₂ = 5 + 8.

⇒ r₁ + r₂ = 13.

As we know that,

⇒ C₁C₂ = r₁ + r₂.

It means 3 common tangents.

Option [A] is correct answer.

Answered by Anonymous
2

❄︎if you like my answer thanks please❄︎

Attachments:
Similar questions