Math, asked by jainmanya6953, 10 months ago

The pair of equations x+ 2y+5=0 and -3x-6y-10=0 have

Answers

Answered by amitkumar44481
4

AnsWer :

D) No Solution.

Correct QuestioN :

The pair of equations x + 2y + 5 = 0 and - 3x - 6y - 10 = 0 have,

  • A) A unique solution.
  • B) Exactly two solutions.
  • C) Infinitely many solutions.
  • D) No solutions.

SolutioN :

Let,

  • x + 2y + 5 = 0.
  • - 3x - 6y - 10 = 0.

☛ Many Solution.

 \tt  \dagger  \:  \:  \:  \:  \: \dfrac{a_1}{a_2}= \dfrac{b_1}{b_2}= \dfrac{c_1}{c_2}

Where as,

  • a1 = 1.
  • a2 = - 3.
  • b1 = 2.
  • b2 = - 6.
  • c1 = 5.
  • c2 = - 10.

 \tt  \dagger  \:  \:  \:  \:  \:  - \dfrac{1}{3}= -  \dfrac{2}{6}=  - \dfrac{5}{10}

 \tt :   \implies  \dfrac{1}{3}=   \dfrac{1}{3}=   \dfrac{1}{2}

✎ We are notice,

 \tt  \dagger  \:  \:  \:  \:  \: \dfrac{a_1}{a_2}= \dfrac{b_1}{b_2} \red{ \neq \dfrac{c_1}{c_2} }

✡ So, Condition not satisfied.

\rule{200}2

Unique Solution.

 \tt  \dagger  \:  \:  \:  \:  \: \dfrac{a_1}{a_2} \neq \dfrac{b_1}{b_2}

 \tt  :  \implies -  \dfrac{1}{3} \neq  - \dfrac{2}{6}

 \tt  :  \implies  \dfrac{1}{3} \neq   \dfrac{1}{3}

✎ We are notice,

 \tt  \dagger  \:  \:  \:  \:  \: \dfrac{a_1}{a_2}  \red{\neq \dfrac{b_1}{b_2}}

✡ So, Condition not satisfied.

\rule{200}2

No Solution.

 \tt  \dagger  \:  \:  \:  \:  \: \dfrac{a_1}{a_2}= \dfrac{b_1}{b_2}\neq \dfrac{c_1}{c_2}

 \tt  :  \implies - \dfrac{1}{3}=  - \dfrac{2}{6} - \neq - \dfrac{5}{10}

 \tt  :  \implies \dfrac{1}{3}=  \dfrac{1}{3} \neq \dfrac{1}{2}

✎ We are notice,

 \tt  \dagger  \:  \:  \:  \:  \:  \green{\dfrac{a_1}{a_2}= \dfrac{b_1}{b_2}\neq \dfrac{c_1}{c_2} }

✡ Condition should be satisfied.

Therefore, the given pair of linear equation have, No Solution.

Answered by khushisemra0881
7

Here is your answer user.

Attachments:
Similar questions