Math, asked by shivangbmehta1316, 1 year ago

The parallel side of a trapezium are in the ratio 2:3 it's height is 20cm and area is 500cm2. Find the length of parallel side.

Answers

Answered by Jasmine2005
18

Answer:


Step-by-step explanation: Since they are in ratio 2:3, let side be 2x and 3x respectively.

Now,

Area of trapezium=

1/2[sum of parallel sides×height]



1/2[(2x+3x)×20]= 500 cm^2


1/2[5x×20]= 500cm^2

5x=(500×2)÷20

x=(500×2)÷(20×5)

x=1000÷100

x=10


2x=2(10)=20. 3x=3(10)=30.


Hence sides are 20cm and 30cm



Mark as brainliest if you like it..

Answered by SANDHIVA1974
3

Given :

The parallel sides of a traperium are in the ratio 2:3 . and the area is 500 cm² .

Height is 20 cm .

To Find :

Length of parallel sides .

Solution :

\longmapsto\tt{Let\:one\:parallel\:side\:be=2x}

\longmapsto\tt{Let\:other\:parallel\:side\:be=3x}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Trapezium=\dfrac{1}{2}\times{(Sum\:of\:parallel\:sides)}\times{h}}

Putting Values :

\longmapsto\tt{500=\dfrac{1}{{\cancel{2}}}\times{(2x+3x)}\times{{\cancel{20}}}}

\longmapsto\tt{500=(2x+3x)\times{10}}

\longmapsto\tt{500=20x+30x}

\longmapsto\tt{500=50x}

\longmapsto\tt{x=\cancel\dfrac{500}{50}}

\longmapsto\tt\bf{x=10}

Value of x is 10 .

Therefore :

\longmapsto\tt{Length\:of\:one\:parallel\:side=2(10)}

\longmapsto\tt\bf{20\:cm}

\longmapsto\tt{Length\:of\:other\:parallel\:side=3(10)}

\longmapsto\tt\bf{30\:cm}

Similar questions