Math, asked by srina4229, 3 months ago

the parallel sides of a trapezium are 40cm and 70cm. if the non - parallel sides are equal, each being 25cm , find the area of the trapezium.​

Answers

Answered by ShírIey
55

DIAGRAM:

\setlength{\unitlength}{1.3cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(1,2.2)\qbezier(0,0)(0,0)(4,0)\qbezier(3,2.2)(4,0)(4,0)\qbezier(1.5,2.2)(0,2.2)(3,2.2)\put(0.8,2.4){$\bf A $}\put(3,2.4){$\bf D $}\put(-0.3,-0.3){$\bf B$}\put(4,-0.3){$\bf C$}\put(4.4,0){\vector(0,0){2.2}}\put( 4.4, 0){\vector(0,-1){0.1}}\put(4.6,1){$\bf 25 \ cm$}\put(0, -0.5){\vector(1,0){4}}\put(0, -0.5){\vector( - 1, 0){0.1}}\put(1.7, - 0.9){$\bf 70 \ cm $}\put(0.8, 2.8){\vector(1,0){2.5}}\put(0.8, 2.8){\vector( - 1, 0){0.1}}\put(1.7, 3){$\bf 40 \ cm $}\end{picture}

  • Let, two points E & F are two points making perpendicular AE & DF on the line BC.

\frak{Given}\begin{cases}\sf{\;\;\; || \; sides \; of \; the \;  trapezium \; are \; \bf{40\; cm} \:\&\;\bf{70\:cm.}}\\\sf{\;\;\;Non\; || \; sides \; of \: the \; trapezium\: \; are \;equal \;to \;\bf{25\: cm.}}\end{cases}

Need to find: Area of the trapezium.

⠀⠀

Therefore,

  • AD = 40 cm & BC = 70 cm.
  • AB = 25 cm & CD = 25 cm.

In ∆ABE,

\underline{\boldsymbol{By\;using\; Hypotenuse\; theorem \: :}}

:\implies\sf (AE)^2 + (BE)^2 = (AB)^2 \\\\\\:\implies\sf (AE)^2 + 15^2 = 25^2 \\\\\\:\implies\sf  AE^2 + 225 = 625\\\\\\:\implies\sf  AE^2 = 625 - 225\\\\\\:\implies\sf  AE^2 =  400\\\\\\:\implies\sf \sqrt{AE^2}= \sqrt{400}\\\\\\:\implies{\underline{\boxed{\frak{\pink{ AE =  20\;cm}}}}}

\therefore{\underline{\sf{Hence, \: value \; of \; AE \; is \; \bf{ 20 \: cm}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Area_{\;(trapezium)} = \dfrac{1}{2} \times (a + b) \times h}}}}\\ \\

  • Where, a & b are the length of two parallel sides. And, h is the height or distance between two parallel sides.⠀⠀⠀

Therefore,

:\implies\sf Area_{\:(trapezium)} = \dfrac{1}{2} \times AE \times (AD + BC)\\\\\\:\implies\sf Area_{\: trapezium)} = \dfrac{1}{2} \times  20 \times (40 + 70)\\\\\\:\implies\sf Area_{\:(trapezium)} = \dfrac{1}{\cancel{\;2}} \times \cancel{20} \; \times  110\\\\\\:\implies\sf Area_{\:(trapezium)} = 10 \times 110 \\\\\\:\implies{\underline{\boxed{\frak{\purple{Area_{\:(trapezium)} = 1100\;cm^2}}}}}\;\bigstar

\therefore{\underline{\sf{Hence,\: Area \; of \; the \; trapezium\; is \;  \bf{1100\;cm^2 }.}}}

Answered by DARLO20
72

➻ See the attachment diagram.

Gɪᴠᴇɴ :

  • The parallel sides of a trapezium are 40 cm & 70 cm.

\longmapsto\:\bf{AB\:=\:40\:cm} \\

\longmapsto\:\bf{CD\:=\:70\:cm} \\

  • Non parallel sides are equal, i.e. 25 cm.

\longmapsto\:\bf{AC\:=\:BD\:=\:25\:cm} \\

Tᴏ Fɪɴᴅ :

  • The area of the trapezium.

Cᴀʟᴄᴜʟᴀᴛɪᴏɴ :

✯ As shown in the diagram,

  • AX and BY are the altitudes, which are equal to each other.

Let,

\:\bf{AX\:=\:BY\:=\:h\:cm} \\

We know that,

↝ In a right angle triangle,

\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{(Hypotenuse)^2\:=\:(Height)^2\:+\:(Base)^2\:}}}}}} \\

Now,

↝ In ACX rightangle triangle,

\bf{(AC)^2\:=\:(AX)^2\:+\:(CX)^2\:} \\

Where,

  • AC = 25 cm

[NOTE : Here, (AB = XY = 40 cm) & (CX = YD)]

  • CX = \sf{\dfrac{70\: - \:40}{2}\:=\:\dfrac{30}{2}} = 15 cm

  • AX = h cm

\bf{(25)^2\:=\:h^2\:+\:(15)^2\:} \\

\bf{625\:=\:h^2\:+\:225\:} \\

\bf{h^2\:=\:625\:-\:225\:} \\

\bf{h^2\:=\:400\:} \\

\bf{h\:=\:\sqrt{400}\:} \\

\bf{h\:=\:20\:cm} \\

We know that,

↝ Area of a trapezium is,

\pink\bigstar\:\:{\underline{\green{\boxed{\bf{\blue{Area\:=\:\dfrac{1}{2}\times{h}\times(sum\:of\:parallel\:sides)\:}}}}}} \\

\bf{Area\:=\:\dfrac{1}{2}\times{20}\:(40\:+\:70)\:} \\

\bf{Area\:=\:10\times{110}\:} \\

\bf\purple{Area\:=\:1100\:cm^2} \\

\Large\tt{Therefore,}

★ The area of the trapezium is 1100 cm².

Attachments:
Similar questions