English, asked by Anonymous, 4 months ago

the perimete tryr of a triangle is 450m . the ratio of i ints side's are 13:12:5 using herons formula find the area of the triangle​ by​

Answers

Answered by ItzCaptonMack
7

\huge\mathtt{\fbox{\red{Answer✍︎}}}

\large\underline\mathfrak{\pink{GIVEN,}}

\dashrightarrow \red{ Perimeter\:of\: triangle= 450m}

\dashrightarrow  \orange{ratios\:of\:the\:sides\:of\:triangles\:are }\\ \dashrightarrow \pink{13:12:5}

\large{\boxed{\bf{ \mathfrak{\blue{FORMULA,}}}}}

\rm{\boxed{\sf{ \large{\circ}\:\: area\:of\:triangle_{(herons\:fomula)}=  \sqrt{s(s - a)(s - b)(s - c)} \:\: \large{\circ}}}}

\large\underline\mathfrak{\pink{TO\:FIND,}}

\dashrightarrow \green{Area\:of\:triangle\:using\:herons\: formula.}

\large\underline\mathfrak{\purple{SOLUTION,}}

\therefore \green{let\:the\:constant\:be\:'x'\:m}

\dashrightarrow \red{sides\:of\:triangle\: are,}\\ \dashrightarrow \blue{a=13x} \\ \purple{b= 12x }\\ \green{c= 5x }

\therefore \orange{finding\:the\:value\:of\:x.}

\dashrightarrow \purple{perimeter\:of\:triangle= a+b+c}

\dashrightarrow \blue{13x+12x+5x=450}

\implies \green{30x=450}

\implies \green{x= \dfrac{450}{30} }

\implies \green{x = \cancel\dfrac{450}{30}}

\implies \green{x=15}

\rm{\boxed{\bf{ \:\: x=15 \:\: }}}

\dashrightarrow \red{x=15}\\  \pink{a= 13x= 13\times 15= 195m}\\ \blue{\dashrightarrow b=12x= 12\times 15 = 180m}\\ \dashrightarrow \purple{c=5x= 5\times 15= 75m}

NOW, FINDING AREA OF TRIANGLE BY HERONS FORMULA,

\therefore \orange{s= \dfrac{a+b+c}{2}}

\implies \orange{ s= \dfrac{195+180+75}{2}}

\implies \orange{s= \dfrac{450}{2}}

\implies \orange{s= 225}

\bf\dashrightarrow \red{area\:of\:triangle_{(herons\:fomula)}=  \sqrt{s(s - a)(s - b)(s - c)}}

\implies \purple{\sqrt{225(225-195)(225-180)(225-75)}}

\implies \purple{ \sqrt{225(30)(45)(150)}}

\implies \purple{\sqrt{ 225(1350)(150)}}

\implies \purple{15\sqrt{202500}}

\implies \purple{15 \times 450}

\implies \purple{6750m^2}

\rm{\boxed{\sf{ \large{\circ}\:\:area\:of\:triangle= 6750m^2 \:\: \large{\circ}}}}

\rm\underline\mathfrak{\pink{AREA\:OF\:TRIANGLE\:IS\:6750m^2.}}

Answered by Anonymous
0

Answer:

⇢Perimeteroftriangle=450m</p><p></p><p>\begin{gathered}\dashrightarrow \orange{ratios\:of\:the\:sides\:of\:triangles\:are }\\ \dashrightarrow \pink{13:12:5}\end{gathered}⇢ratiosofthesidesoftrianglesare⇢13:12:5</p><p></p><p>\large{\boxed{\bf{ \mathfrak{\blue{FORMULA,}}}}}FORMULA,</p><p></p><p>\rm{\boxed{\sf{ \large{\circ}\:\: area\:of\:triangle_{(herons\:fomula)}= \sqrt{s(s - a)(s - b)(s - c)} \:\: \large{\circ}}}}∘areaoftriangle(heronsfomula)=s(s−a)(s−b)(s−c)∘</p><p></p><p>\large\underline\mathfrak{\pink{TO\:FIND,}}TOFIND,</p><p></p><p>\dashrightarrow \green{Area\:of\:triangle\:using\:herons\: formula.}⇢Areaoftriangleusingheronsformula.</p><p></p><p>\large\underline\mathfrak{\purple{SOLUTION,}}SOLUTION,</p><p></p><p>\therefore \green{let\:the\:constant\:be\:'x'\:m}∴lettheconstantbe′x′m</p><p></p><p>\begin{gathered}\dashrightarrow \red{sides\:of\:triangle\: are,}\\ \dashrightarrow \blue{a=13x} \\ \purple{b= 12x }\\ \green{c= 5x } \end{gathered}⇢sidesoftriangleare,⇢a=13xb=12xc=5x</p><p></p><p>\therefore \orange{finding\:the\:value\:of\:x.}∴findingthevalueofx.</p><p></p><p>\dashrightarrow \purple{perimeter\:of\:triangle= a+b+c}⇢perimeteroftriangle=a+b+c</p><p></p><p>\dashrightarrow \blue{13x+12x+5x=450}⇢13x+12x+5x=450</p><p></p><p>\implies \green{30x=450}⟹30x=450</p><p></p><p>\implies \green{x= \dfrac{450}{30} }⟹x=30450</p><p></p><p>\implies \green{x = \cancel\dfrac{450}{30}}⟹x=30450</p><p></p><p>\implies \green{x=15}⟹x=15</p><p></p><p>\rm{\boxed{\bf{ \:\: x=15 \:\: }}}x=15</p><p></p><p>\begin{gathered}\dashrightarrow \red{x=15}\\ \pink{a= 13x= 13\times 15= 195m}\\ \blue{\dashrightarrow b=12x= 12\times 15 = 180m}\\ \dashrightarrow \purple{c=5x= 5\times 15= 75m} \end{gathered}⇢x=15a=13x=13×15=195m⇢b=12x=12×15=180m⇢c=5x=5×15=75m</p><p></p><p>NOW, FINDING AREA OF TRIANGLE BY HERONS FORMULA,</p><p></p><p>\therefore \orange{s= \dfrac{a+b+c}{2}}∴s=2a+b+c</p><p></p><p>\implies \orange{ s= \dfrac{195+180+75}{2}}⟹s=2195+180+75</p><p></p><p>\implies \orange{s= \dfrac{450}{2}}⟹s=2450</p><p></p><p>\implies \orange{s= 225}⟹s=225</p><p></p><p>\bf\dashrightarrow \red{area\:of\:triangle_{(herons\:fomula)}= \sqrt{s(s - a)(s - b)(s - c)}}⇢areaoftriangle(heronsfomula)=s(s−a)(s−b)(s−c)</p><p></p><p>\implies \purple{\sqrt{225(225-195)(225-180)(225-75)}}⟹225(225−195)(225−180)(225−75)</p><p></p><p>\implies \purple{ \sqrt{225(30)(45)(150)}}⟹225(30)(45)(150)</p><p></p><p>\implies \purple{\sqrt{ 225(1350)(150)}}⟹225(1350)(150)</p><p></p><p>\implies \purple{15\sqrt{202500}}⟹15202500</p><p></p><p>\implies \purple{15 \times 450}⟹15×450</p><p></p><p>\implies \purple{6750m^2}⟹6750m2</p><p></p><p>\rm{\boxed{\sf{ \large{\circ}\:\:area\:of\:triangle= 6750m^2 \:\: \large{\circ}}}}∘areaoftriangle=6750m2∘</p><p></p><p>\rm\underline\mathfrak{\pink{AREA\:OF\:TRIANGLE\:IS\:6750m^2.}}AREAOFTRIANGLEIS6750m2.</p><p></p><p>

Similar questions