Math, asked by ritish6864, 5 days ago

The perimeter of a rectangle is 154m. Length is 2m more than twice its breadth. Find the length and breadth ?

Urgent
Spam not ​

Answers

Answered by mrani42
4

length =77m

breath =75m

Answered by Anonymous
1809

Given : The perimeter of a rectangle is 154m & Length is 2m more than twice its breadth.

To Find : Find the length and breadth rectangle ?

_________________________

Solution : Let the breadth be x then its length be x + 2.

~

\underline{\frak{As ~we ~know ~that~:}}

  • \boxed{\sf\pink{Perimeter~ of ~rectangle~=~2\bigg(l~+~b\bigg)}}

~

Where,

  • "l" is length
  • "b" is breadth

~

❍ Perimeter of rectangle = 154m

~

\pmb{\sf{\underline{According ~to ~the~ Given ~Question~:}}}

~

\qquad\qquad{\sf:\implies{2\bigg(x~+~2~x\bigg)~=~154}}

\qquad\qquad{\sf:\implies{2\bigg(2x~+~2\bigg)~=~154}}

\qquad\qquad{\sf:\implies{2x~+~2~=~\dfrac{154}{2}}}

\qquad\qquad{\sf:\implies{2x~+~2~=~\cancel\dfrac{154}{2}}}

\qquad\qquad{\sf:\implies{2x~+~2~=~77}}

\qquad\qquad{\sf:\implies{2x~=~77~-~2}}

\qquad\qquad{\sf:\implies{2x~=~75}}

\qquad\qquad{\sf:\implies{x~=~\dfrac{75}{2}}}

\qquad\qquad{\sf:\implies{x~=~\cancel\dfrac{75}{2}}}

\qquad\qquad:\implies{\underline{\boxed{\frak{\purple{x~=~37.5m}}}}}

~

Therefore,

  • {\sf{x~=~37.5m}}

~

Hence,

  • \underset{\blue {\bf Required\ Answer}}{\underbrace{\boxed{\frak{\pink{\dfrac{Length ~of ~rectangle~=~x~+~5~=~42.5m}{Breadth ~of ~rectangle~=~x~=~37.5m}}}}}}

~

________________________

\pmb{\frak{More ~Information~:}}

  • {\sf\leadsto{Volume~ of~ cylinder~=~πr^2h}}

  • {\sf\leadsto{T.S.A ~of ~cylinder~=~2πrh~+~2πr^2}}

  • {\sf\leadsto{Volume~ of ~cone ~=~\dfrac{1}{3}πr^2h}}

  • {\sf\leadsto{C.S.A ~of ~cone~=~πrl}}

  • {\sf\leadsto{T.S.A ~of~ cone~=~πrl~+~πr^2}}

  • {\sf\leadsto{Volume ~of ~cuboid~=~l~×~b~×~h}}

  • {\sf\leadsto{C.S.A ~of ~cuboid~=~2\bigg(l~+~b\bigg)h}}

  • {\sf\leadsto{T.S.A ~of ~cuboid~=~2\bigg(lb~+~bh~+~lh\bigg)}}

  • {\sf\leadsto{C.S.A ~of ~cube~=~4a^2}}

  • {\sf\leadsto{T.S.A ~of ~cube~=~6a^2}}

  • {\sf\leadsto{Volume~ of~ cube~=~a^3}}

  • {\sf\leadsto{Volume ~of~ sphere~=~\dfrac{4}{3}πr^3}}

  • {\sf\leadsto{Surface ~area ~of ~sphere~=~4πr^2}}

  • {\sf\leadsto{Volume~ of ~hemisphere~=~\dfrac{2}{3}πr^3}}

  • {\sf\leadsto{C.S.A ~of ~hemisphere~=~2πr^2}}

  • {\sf\leadsto{T.S.A ~of ~hemisphere~=~3πr^2}}

________________________

Similar questions