The perimeter of a rectangle is 46m and his diagonal is 17m. then find the area of rectangle
Answers
Answer:
- Area of rectangle = 120 m².
Step-by-step explanation:
Let l and b be the length and breadth of the rectangle.
Given:
- Perimeter of rectangle = 46 m
- Diagonal = 17 m
To Find:
- Area.
So, according to question
⇒ Perimeter = 2 (l + b)
⇒ 46 = 2 (l + b)
⇒ l + b = 23
⇒ b = 23 - l .............(1)
Now, in the triangle formed by the adjacent sides and one diagonal of the rectangle, using Pythagoras theorem.
⇒ l² + b² = diagonal²
⇒ l² + b² = 17²
Now, put the value of b from equation (1), we get
⇒ l² + (23 - l)² = 289
⇒ l² + 529 + l² - 46l = 289
⇒ 2l² - 46l + 240 = 0
Now, take 2 common, we get
⇒ l² + 23l + 120 = 0
⇒ l² - 15l - 8l + 120 = 0
⇒ l(l - 15) - 8(l - 15) = 0
⇒ (1 - 8)(1 - 15) = 0
⇒ l = 8 m or 15 m.
Now, from 1st equation,
⇒ b = 23 - l
If l = 8 m, then
⇒ b = 23 - 8
⇒ b = 15 m
If l = 15 m, then
⇒ b = 23 - 15
⇒ b = 8 m
Now, area of rectangle = l × b
⇒ Area of rectangle = 8 × 15
⇒ Area of rectangle = 120 m²
Hence, area of rectangle = 120 m².
#answerwithquality
#BAL