Math, asked by genius32, 1 year ago

the perimeter of a rhombus is 164 M if length of 1 of diagonal is 18 M find the length of other diagonal hence the find the area of Rhombus

Answers

Answered by tnwramit1
32
This is ur answer hope it will help u in case of any doubt comment below
Attachments:
Answered by amirgraveiens
13

Length of other diagonal is 80 cm and area of Rhombus is 720 cm2.

Step-by-step explanation:

Given:

Let the diagonals AC and BD of a rhombus ABCD meet at O. Diagonal AC= 18 cm , diagonal BD=?

Length of each side = \frac{Perimeter of rhombus}{4} = \frac{164}{4} = 41 cm

or AB=BC=CD=AD= 41 cm.

In right angled triangle AOB,

AO^2+OB^2=AB^2

(\frac{AC}{2} )^2+(\frac{BD}{2} )^2= 41^2    [AO=\frac{AC}{2}, OB=\frac{BD}{2} ]

(\frac{18}{2} )^2+(\frac{BD}{2} )^2= 41^2

(9 )^2+(\frac{BD}{2} )^2= 41^2

(\frac{BD}{2} )^2= 1681-81

(\frac{BD}{2} )^2= 1600

\frac{BD}{2}=\sqrt{1600}

\frac{BD}{2}=40

BD = 80 cm.

Area of rhombus = \frac{1}{2}\times diagonal_1 \times diagonal_2

                            = \frac{1}{2}\times AC \times BD

                             = \frac{1}{2}\times 18 \times 80

                             = 9 \times 80

                             = 720 cm^2

Hence length of other diagonal is 80 cm and area of Rhombus is 720 cm^2.

Similar questions