the perimeters of the ends of the frustum of a cone are 207.24 cm and 169.56cm.if the height of the frustum be 8 cm,find the whole surface area of the frustum. (use .3.14)
Answers
Perimeter of 1st end = 2 π R
⇒ 207. 24 cm = 2 x 3.14 x
R
⇒ 207.24 cm = 6.28 cm x R
⇒ 33 = R
⇒ i .e R = 33
Perimeter or 2nd end = 2 π r
⇒ 169. 56 cm = 2 x 3.14 x r
⇒ 169. 56 cm = 6.28 cm x r
⇒ 27 cm = r
⇒ i .e. , r = 27 cm
So ,
We need to find slant height first .
R = 33 cm
r = 27 cm
H = 8 cm
⇒ slant height
=
⇒ Slant height
=
⇒ Slant height
=
⇒ Slant height = 20 .59 ,
round it to 20.6 cm
⇒Total surface area
= π ( r + R ) l + π R² + π r ²
⇒ Total surface area =
3.14 ( 27 + 33 ) 20.6 + 3.14 ( 33)² + 3.14(27)²
⇒ Total surface area = 3.14 ( 60 ) (20.6) + 3.14 ( 1089 ) +
3.14 ( 729)
⇒ Total Surface area = 3881.04 + 3419.46 + 2289.06
⇒ Total Surface area = 9589.56 cm²
Answer:
= 7592.52 cm²
Step-by-step explanation:
Let R and r be the radii of the circular ends of the frustum. (R> r)
2R = 207.24
R = 207.24/ (2 X 3.14)
R = 33 cm
2r = 169.56 cm
r = 169.56 / (2 X 3.14)
r = 27 cm
1² = h² + (R-r)²
= 8² + (33-27)²
l = 10 cm
Whole surface area of the frustum
= (R2 + r2 + (R+r)l)
= 3.14
((33)2 + (27)2 + (33+27)10)
= 3.14 (1089 +729 + 600)
= 3.14 X 2418 cm²