Physics, asked by mohitdelmi, 10 months ago

The position of a particle is given by X=4t^3-2t^2+3t , find the velicity and acceleration in 3 seconds?



The position of a particle is given by X=4t^3-2t^2+3t , find the velicity and acceleration in 3 seconds?​

Answers

Answered by kikibuji
7

Answer:

refer this.

sorry for late answer

Attachments:
Answered by Rohit18Bhadauria
39

Given:

Position of particle, x= 4t³-2t²+3t

To Find:

Velocity and acceleration of particle after 3 second

Solution:

We know that,

  • Velocity of a body 'v' is given by

\pink{\underline{\boxed{\bf{v=\dfrac{dx}{dt}}}}}

  • Acceleration of a body 'a' is given by

\purple{\underline{\boxed{\bf{a=\dfrac{dv}{dt}}}}}

where,

x is the displacement of particle at time t

━━━━━━━━━━━━━━━━━━━━━

Let the velocity of given particle be v and acceleration of given particle be a

So,

\longrightarrow\rm{v=\dfrac{dx}{dt}}

\longrightarrow\rm{v=\dfrac{d(4t^{3}-2t^{2}+3t)}{dt}}

\longrightarrow\rm{v=4(3t^{2})-2(2t)+3(1)}

\longrightarrow\rm{v=12t^{2}-4t+3}

At t= 3 sec

\longrightarrow\rm{v=12(3)^{2}-4(3)+3}

\longrightarrow\rm{v=12(9)-12+3}

\longrightarrow\rm{v=108-12+3}

\longrightarrow\rm\green{v=99\ m/s}

Also,

\longrightarrow\rm{a=\dfrac{dv}{dt}}

\longrightarrow\rm{a=\dfrac{d(12t^{2}-4t+3)}{dt}}

\longrightarrow\rm{a=12(2t)-4(1)+0}

\longrightarrow\rm{a=24t-4}

At t= 3 sec

\longrightarrow\rm{a=24(3)-4}

\longrightarrow\rm{a=72-4}

\longrightarrow\rm\green{a=68\ m/s^{2}}

Hence, the velocity of particle is 99 m/s and acceleration of particle is 68 m/s².


Anonymous: Awesome :D
Similar questions