Physics, asked by Pickatchu6028, 7 months ago

The position x of particle moving along x-axis at time t given by equation t=rootx+2 where x is in meter and t is in seconds find work done by force in first four seconds

Answers

Answered by Anonymous
20

Given:

Position x of particle moving along x-axis at time t given by equation:

 \rm t =  (\sqrt{x}  + 2) \: s

To Find:

Work done by force in first four seconds

Answer:

Position-time relation:

 \rm  \sqrt{x}  = t - 2 \\   \\   \rm x =  ({(t - 2)}^{2} ) \: m \\  \\  \rm  \dfrac{dx}{dt} = 2(t - 2) \\  \\  \rm dx = (2(t - 2)).dt \:  \:  \:  \:  \:  \:  \:  \:  \:  ...eq_1

Rate of change of position-time relation gives velocity:

   \rm  v =  \dfrac{dx}{dt}  \\  \\  \rm  v =  \dfrac{d}{dt}( {(t - 2)}^{2} ) \\  \\  \rm  v  = 2(t - 2) \\  \\ \rm  v  = (2t - 4) \: m {s}^{ - 1}

Rate of change of velocity-time relation gives accelration:

   \rm  a =  \dfrac{dv}{dt}  \\  \\  \rm  a =  \dfrac{d}{dt}( 2t - 4) \\  \\ \rm  a  = 2 \: m {s}^{ - 1}

As, acceleration of particle is constant hence force will be constant.

So,

 \rm \implies dW = F.dx \\  \\ \rm  \implies \int dW = \int ma.dx \\  \\  \rm \implies W = ma \int dx \:  \:  \:  \:  \:  \:  ... from \ eq_1 \\  \\ \rm \implies W = ma \int\limits^4_0(2(t - 2)).dt \\  \\ \rm \implies W = m \times 2 \times 2 \int\limits^4_0(t - 2).dt \\  \\ \rm \implies W = 4m \int\limits^4_0(t - 2).dt \\  \\  \rm \implies W = 4m  \bigg[ \dfrac{ {(t - 2)}^{2} }{2}  \bigg]_0^4 \\  \\ \rm \implies W = 2m  \bigg[  {(t - 2)}^{2}  \bigg]_0^4 \\  \\  \rm \implies W = 2m  \bigg[  {(4 - 2)}^{2} -  {(0 - 2)}^{2}   \bigg] \\  \\  \rm \implies W = 2m  \bigg[   {2}^{2}  -  {( - 2)}^{2}  \bigg] \\  \\  \rm \implies W = 2m  \bigg[ 4 - 4 \bigg] \\  \\ \rm \implies W = 0

 \therefore  \boxed{\mathfrak{Work \ done \ by \ force \ in \ first \ 4 \ s = 0}}

Answered by Qᴜɪɴɴ
20

Given:

t =  \sqrt{x}  + 2

━━━━━━━━━━━━━━━━

Need to find:

  • The work done in first 4sec =?

━━━━━━━━━━━━━━━━

Solution:

t =  \sqrt{x}  + 2 \\  \implies \: (t  - 2) =  \sqrt{x}   \\ \implies \: x =  {(t  -2 )}^{2}

We know,

v =  \dfrac{dx}{dt}

 \implies \: v =  \dfrac{d {(t - 2)}^{2} }{dx}

 \implies \: v =  \dfrac{d( {t}^{2} - 4t + 4) }{dx}

\purple{\bold{ \implies \: v = 2t - 4 \: m/s}}

━━━━━━━━━━━━━━━━

Now we know,

a =  \dfrac{dv}{dt}

 \implies \: a =  \dfrac{d(2t - 4)}{dt}

 \purple{\bold{\implies \: a = 2m \: / {s}^{2} }}

━━━━━━━━━━━━━━━━

We know

x =  {(t - 2)}^{2}

 \implies \: x =  {t}^{2}  - 4t + 4 \\  \implies \:  \dfrac{dx}{dt}  =  \dfrac{d( {t}^{2} - 4t + 4) }{dt}

\purple{\bold{ \implies \:  \dfrac{dx}{dt}  = 2t - 4}}

━━━━━━━━━━━━━━━━

dW= dF

\implies \int dW = \int ma.dx

As mass and acceleration is constant here,

\implies W = ma \int dx

\implies W = ma \int\limits^4_0(2t - 4).dt

taking 2 common,

\implies W = m \times a \times 2 \int\limits^4_0(t - 2).dt

\implies W = 4m \int\limits^4_0(t - 2).dt

\implies W = 4m \bigg[ \dfrac{ {(t - 2)}^{2} }{2} \bigg]_0^4

\implies W = 2m \bigg[ {(t - 2)}^{2} \bigg]_0^4

\implies W = 2m \bigg[ {(4 - 2)}^{2} - {(0 - 2)}^{2} \bigg]

\implies W = 2m \bigg[ 4 - 4 \bigg]

\implies{\huge{\boxed{\red{\bold{W=0}}}}}

Similar questions