The product of three consecutive number is always divisible by number. find the number
Answers
Answered by
0
Step-by-step explanation:
If n = 3k + 2, then n + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1) which is again divisible by 3. So we can say that one of the numbers among (n, n + 1 and n + 2) is always divisible by 3. Therefore the product of numbers n(n+1)(n+2) is always divisible by 3
Answered by
0
Answer:
If n = 3k + 2, then n + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1) which is again divisible by 3. So we can say that one of the numbers among (n, n + 1 and n + 2) is always divisible by 3. Therefore the product of numbers n(n+1)(n+2) is always divisible by 3.
Similar questions
Math,
1 month ago
India Languages,
1 month ago
Science,
3 months ago
Math,
3 months ago
India Languages,
10 months ago