Physics, asked by dayalupawar240, 1 year ago

The pulley shown in figure (10-E8) has a radius 10 cm and moment of inertia 0⋅5 kg-m2 about its axis. Assuming the inclined planes to be frictionless, calculate the acceleration of the 4⋅0 kg block.
Figure

Answers

Answered by bhuvna789456
1

The acceleration of the 4.0 Kg block is  0.247 m/s².

Explanation:

Step 1:

Given values in the question,  

Assume, 4 kg acceleration block = a

                                        Tension = T

Step 2:

Now if we can withstand tension in 2 kg = T'

So,  

        4 g \cdot \sin 45^{\circ}-T=4 a

        4 g \cdot \frac{1}{\sqrt{2}}-T=4 a

        4 g \cdot \frac{1}{\sqrt{2}}-4 a=T

Also,

        T^{\prime}-2 g \cdot \sin 45^{\circ}=2 a

As the acceleration is same.

        T^{\prime}=2 a+2 g \cdot \sin 45^{\circ}

        T^{\prime}=2 a+2 g \cdot \frac{1}{\sqrt{2}}

Step 3:

Now,

So the Overall Torque  =\left(T-T^{\prime}\right) \times 0.10

                                     =0.10 \times\left\{\left(4 g \cdot \frac{1}{\sqrt{2}}-4 a\right)-\left(2 a+2 g \cdot \frac{1}{\sqrt{2}}\right)\right\}

                                     =0.10\left(2 g \frac{1}{\sqrt{2}}-6 a\right)

Now we have to accelerate angular,

                                          \alpha=\frac{a}{r}

                                          \alpha=\frac{a}{0.10}

Step 4:

Hence, from Torque = Iα

     0.10\left(2 g \frac{1}{\sqrt{2}}-6 a\right)=1 \alpha  

     0.10\left(2 g \frac{1}{\sqrt{2}}-6 a\right)=0.50 \times \frac{a}{0.10}

            =0.50 \times \frac{a}{0.10}=5 a        

                           50 a=2 g \frac{1}{\sqrt{2}}-6 a

                   50 a+6 a=2 g \frac{1}{\sqrt{2}}

                    56 a=2 g \frac{1}{\sqrt{2}}

                          =\frac{2 \times 9.8 \times \sqrt{2}}{2}

                          = 9.8\sqrt{2}  

Hence,            a=9.8 \times \frac{1.41}{56}

                       a =0.2474 \mathrm{m} / \mathrm{s}^{2}

Therefore, the acceleration is 0.247 m/s².      

Answered by Anonymous
1

{\bold{\huge{\red{\underline{\green{ANSWER}}}}}}

0.247 m/s will be the answer

Similar questions