Math, asked by aasha2944, 1 year ago

The radii of two concentric circles are 13 cm and 8 cm respectively. ab is a diameter of the bigger circle. bd is a tangent to the smaller circle touching it at

d. find the length ad.

Answers

Answered by zerodown1024
10


Correction in question - Since length of AD that is radius os already given, I'm assuming that I have to find length of tangent BD.


\text{Given}\\<br />AB = 13 cm \\<br />AD = 8 cm \\ \\<br />\text{To find} ~:~ \text{Length of BD} \\<br />\text{ we know that the angle formed between the radius and tangent of a cirlce is} ~90^{\circ}~~\\<br />\implies \angle ADB = 90^{\circ} \\<br />\implies \triangle \text{ADB is an right angled triangle.}\\<br />\text{We can find side BD by Pythagorean theorem}\\<br />\implies BD^2 = AB^2 - AD^2 \\<br />\implies BD^2 = 13^2 - 8^2<br />\implies BD^2 = 169-64\\<br />\implies BD^2 = 105 \\<br />\implies \sqrt{BD^2} = \sqrt{105}\\<br />\implies BD = 10.24 cm <br />
Attachments:
Answered by VelvetBlush
5

Let BD produced meet the larger circle at E.

Join OD and AE.

So, \sf{OD\:\perp\:BDE}

and \sf{\angle{AEB}=90°}

\longrightarrow\sf{\angle{ODB}=\angle{AEB}=90°}

But these corresponding angles

\therefore \sf{OD||AE}

Now, in ∆BEA,AE = 2OD ....(mid - point theorem)

= \sf{2 × 8 = 16cm}

In right ∆ODB,

\longrightarrow\sf{ {BD}^{2}  =  {OB}^{2}  -  {OD}^{2} }

\longrightarrow\sf{ {(13)}^{2}  -  {(8)}^{2} }

\longrightarrow\sf{169-64=105}

\longrightarrow \sf\red{BD=√105}

\longrightarrow\sf\red{DE=√105}

Now, in right ∆AED,

\longrightarrow\sf{ {AD}^{2}  =  {AE}^{2}  -  {ED}^{2} }

\longrightarrow \sf{{AD}^{2}  =  {(16)}^{2}  +  {( \sqrt{105}) }^{2}}

\longrightarrow \sf{{AD}^{2}  = 256 + 105}

\longrightarrow\sf{ {AD}^{2}  = 361}

\longrightarrow\sf{AD =   \sqrt{361}  = 19cm}

Similar questions