Math, asked by purvaa74, 4 months ago

The radius and height of a cylinder are in the ratio 5: 7 and it volume is 4400 cm. Find the radius
and surface area of the cylinder.​

Answers

Answered by Anonymous
26

Given: Ratio of radius and height of a cylinder is 5:7. & Volume of park is 4400 cm.

Need to find: Radius and surface area of cylinder?

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's consider radius and height of cylinder be 5x and 7x.

⠀⠀⠀⠀⠀

As we know that,

⠀⠀⠀⠀⠀

\begin{gathered}\star\:{\underline{\boxed{\frak{Volume_{\:(cylinder)} = \pi {r}^{2}h}}}}\\\\\\ \bf{\dag}\:{\underline{\frak{Putting\:given\:values\:in\:formula,}}}\\\\\\ :\implies\sf 4400 =  \frac{22}{7} \times   ({5x})^{2}  \times 7x\\\\\\ :\implies\sf  4400 =  \frac{22}{7} \times   25   {x}^{2}  \times 7x  \\  \\  \\  :\implies\sf4400 =  22\times   25   {x}^{2}  \times x \\  \\  \\  :\implies\sf4400 =  22 \times 25   {x}^{3} \\\\\\ :\implies\sf x^3 =  \frac{4400}{22 \times 25} \\\\\\ :\implies\sf x^3 =  \frac{4400}{550} \\\\\\ :\implies\sf x^3 =  8\\\\\\ :\implies{\underline{\boxed{\frak{\purple{x = 2}}}}}\:\bigstar\\\\\end{gathered}

Thus, Radius will be 5 × 2 = 10cm & height will be 7 × 2 = 14cm.

Now, Surface area,

\begin{gathered}\star\:{\underline{\boxed{\frak{Surface \: Area_{\:(cylinder)} = 2 \pi {r}h + 2\pi {r}^{2}}}}}\\\\\\ \bf{\dag}\:{\underline{\frak{Putting\:given\:values\:in\:formula,}}}\\\\\\ :\implies\sf 2\times \dfrac{22}{7} \times 10 \times 14+ 2 \times \frac{22}{7} \times {10}^{2}\\\\\\ :\implies\sf  2\times \dfrac{22}{7} \times 140 + 2 \times \frac{22}{7} \times 100 \\  \\  \\  :\implies\sf2\pi \times 140   +  2\pi \times 100\\  \\  \\  :\implies\sf280\pi + 200\pi\\\\\\ :\implies\sf 480\pi \\\\\\ :\implies{\underline{\boxed{\frak{\purple{1508.57 \ cm}}}}}\:\bigstar\\\\\end{gathered}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Therefore,

⠀⠀⠀⠀⠀

Radius of the cylinder, 5x = 10cm

Surface area of the cylinder, 1508.57cm (approx)

⠀⠀⠀⠀⠀

\therefore\:{\underline{\sf{Hence,\:Radius\:and\:surface \: area \: of \: cylinder \:is\:\bf{10\:cm}\: \sf{and}\: \bf{1508.57\:cm}\: \sf{respectively}.}}}

⠀⠀⠀⠀⠀

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}


rsagnik437: Excellent! :D
Answered by kingagastyapaliwal
1

the above ans is correct

Step-by-step explanation:

Similar questions