the radius and height of a cylinder are in the ratio 7 : 2. if the volume of the cylinder is 8316 cm3, find the total surface area of the cylinder.
Answers
Answered by
5
Let ratio of radius and height of a cylinder are 7x : 2x.
Volume of the cylinder (V) = πr2h
8316 = (22/7)(7x)²(2x)
⇒ 8316 = (22 x 14) x3x³
⇒ x³= 8316 / 308
⇒x³= 27
∴x = 3.
radius of the cylinder = 7 x3 = 21 cm.
height of the cylinder = 2x 3 = 6 cm
Total surface area of the cylinder = 2πr( r + h)
= 2 x (22/7) 21( 21 + 6)
= 2 x 22 x 3 x 27
= 3564 cm²
Volume of the cylinder (V) = πr2h
8316 = (22/7)(7x)²(2x)
⇒ 8316 = (22 x 14) x3x³
⇒ x³= 8316 / 308
⇒x³= 27
∴x = 3.
radius of the cylinder = 7 x3 = 21 cm.
height of the cylinder = 2x 3 = 6 cm
Total surface area of the cylinder = 2πr( r + h)
= 2 x (22/7) 21( 21 + 6)
= 2 x 22 x 3 x 27
= 3564 cm²
Similar questions