Math, asked by musa621, 3 months ago

The radius of the sphere is 7 cm. It is melted and drawn into a wire of radius 0.3 cm. Find the length of the wire.

Answers

Answered by mathdude500
6

\large\underline\blue{\bold{Given \:  Question :-  }}

The radius of the sphere is 7 cm. It is melted and drawn into a wire of radius 0.3 cm. Find the length of the wire.

─━─━─━─━─━─━─━─━─━─━─━─━─

\huge{AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Given :-  }}

The radius of the sphere is 7 cm.

It is melted and drawn into a wire of radius 0.3 cm.

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{To \:  Find :-  }}

The length of the wire.

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

{{ \boxed{\large{\bold\red{Volume_{(Cylinder)}\: = \:\pi r^2 h }}}}}

{{ \boxed{\large{\bold\red{Volume_{(Sphere)}\: = \:\dfrac{4}{3} \pi r^3}}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\begin{gathered}\begin{gathered}\bf let= \begin{cases} &\sf{radius \: of \: cylinder \:  = r} \\ &\sf{height \: of \: cylinder \:  = h} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf let= \begin{cases} &\sf{radius \: of \: sphere = R}  \end{cases}\end{gathered}\end{gathered}

\bf \: \red \: According \:  to  \: statement  -

❥︎Radius of sphere, R = 7 cm

❥︎Radius of wire, r = 0.3 cm

❥︎Since, sphere is melted and recast in to wire, therefore

\bf \:  ⟼  \blue \: V_{(cylinder)} = V_{(sphere)}

\bf\implies \:\pi \:  {r}^{2} h = \dfrac{4}{3} \pi \:  {R}^{3}

\bf\implies \: {r}^{2} h = \dfrac{4}{3}  {R}^{3}

\bf \:  ⟼ 0.3 \times 0.3 \times h = \dfrac{4}{3}  \times 7 \times 7 \times 7

\bf\implies \:h = 5081.48 \: cm = 50.48 \: m

─━─━─━─━─━─━─━─━─━─━─━─━─

Answered by guptavishrut
2

Answer:

5081.48

Step-by-step explanation:

The length of the wire is 5081.48 cm.

Step-by-step explanation:

Since we have given that

Radius of sphere = 7 cm

Radius of wire =0.3 cm

We need to find the length of the wire,

So, Volume of sphere = volume of wire

=4/3πr³=πr²h

=4/3π*7*7*7=π*0.3*0.3*h

=4*343/3*0.09=h

h=5081.48

Similar questions