The ratio of the volume of water in Bottle
P to the volume of water in Bottle Q is
3: 4. Rajeev drank 40 mL of the water
from Bottle P and the ratio then became
13:20. How much water was there in
bottle P at first?
Answers
Answer:
1
down vote
favorite
2
Say there is a water bottle that is filled with 300 mL of water and has a circular hole with a radius of 2 mm. In this bottle, the water sits 7.8cm above the top of the hole (which has been drilled 1.5cm above the bottom of the bottle).
According to Bernoulli's law the velocity v of the water flowing out is equal to 2gh−−−√
Therefore for the setup above, v=2∗9.81 m/s2∗0.078 m−−−−−−−−−−−−−−−−−−−√=1.24 m/s
Using this, the flow rate can be calculated as Q = Av = π(0.002 m)2∗1.24 m/s=0.000016 m3/s=16 mL/s
This doesn't seem accurate considering that the experimental flow rate is equal to 8 mL/s (40 mL over 5 seconds). However I understand that it ignores viscosity (and other things?)
I'm wondering a few things, firstly, does the theoretical math here apply to the situation I'm describing? The hole in the bottle isn't exactly a pipe and the only examples I've seen with water flow involve pipes.
Secondly, can Poiseuille's Law be used to determine the flow rate instead, with a more accurate result? (From what I understand Q=πPR^4/8nl, however I don't understand what P is, seeing as in Bernoulli's law pressure cancels and as aforementioned this isn't a typical pipe example.)
Thirdly, I assume the theoretical flow rate will still be different from the experimental flow rate, what factors cause this?