Math, asked by RanvirSinghVerms, 5 months ago

the ratio of two sides of a parallelogram is as 3 : 5 and, its perimeter is 48 .find the sides of the parallelogram .​

Answers

Answered by thebrainlykapil
35

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • The ratio of two sides of a parallelogram is as 3 : 5 and, its perimeter is 48 .find the sides of the parallelogram .

 \\  \\

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

  • First Side ( length )= 3x
  • Second Side ( breadth ) = 5x
  • Perimeter = 48

 \\ \\

\large\underline{ \underline{ \sf \maltese{ \: To \: Find :- }}}

  • The Sides of the Parallelogram.

 \\  \\

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\qquad \quad {:} \longrightarrow \sf{\bf{Perimeter \:  =  \: 2 \: ( \: Length \:   +  \: Breadth \: ) }} \\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{48\:  =  \: 2 \: ( \: 3x \:   +  \: 5x \: ) }} \\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{48\:  =  \: 2 \: ( \: 8x \: ) }} \\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{48\:  =  \: 2 \: \times \: 8x \: }} \\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{48\:  =  \: 16x \: }} \\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{\: \frac{48}{16}   =  \: x \: }} \\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{\:\cancel \frac{48}{16}   =  \: x \: }} \\ \\

\qquad \quad {:} \longrightarrow \sf{\bf{\: 3   =  \: x \: }} \\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━

Sides of Parallelogram :-

  • First Side = 3x = 3 × 3 = 9metre
  • Second Side = 5x = 5 × 3 = 15metre

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Diagram- }}}

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large  9 cm}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large 15 cm}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Itzcupkae
45

Step-by-step explanation:

⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

The ratio of two sides of parallelogram is 3 : 5 and its perimeter is 48 cm.

Let length = l and breadth = b (l >b)

⠀⠀⠀⠀⠀⠀Then b : l = 3 : 5.

b =  \frac{31}{5}  \\  \\ perimeter \:  = 2(l + b) = 48cm \\  \\ 2(1 +  \frac{31}{5} ) = 48cm \\  \\  \\  \frac{81}{5}  = 24cm \\  \\ l = 15cm \\  \\ then \: b \:  = 9cm \\  \\

\huge \bf{ \boxed{ \boxed{ \red{ \bigstar{ \underline{ \sf{ \blue{ \mathfrak{answer}}}}}}}}}

⠀⠀⠀⠀⠀⠀The sides are 15 cm, 9 cm,15cm, 9 cm.

⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{\huge{\underline{\small{\mathbb{\red{HOPE\:HELP\:U\:BUDDY :)}}}}}}

Similar questions