Math, asked by dishu52, 1 year ago

the ratio of volume of two spheres is 27:8. find the ratio of there surface area

Answers

Answered by Anonymous
16
Hey dear ☺️

Here your answer
_________________
⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️


formula \: of \:volume \: of spheres \:  =  \frac{4}{3}\pi {r}^{3}  \\  \\ here \: given \: the \: ratio \: of \: volume \: of \: spheres \:  = 27\ratio8 \\  \\  \frac{ \frac{4}{3}\pi {r1}^{3}}{ \frac{4}{3}\pi {r2}^{3}  }  =  \frac{27}{8}  \\  \\  \frac{ {r1}^{3} }{ {r2}^{3} }  =  \frac{27}{8}  \\  \\  \frac{r1}{r2}  =  \frac{ \sqrt[3]{27} }{ \sqrt[3]{8} }  =  \frac{3}{2}  \\  \\ now \: we \: find \: to \: ratio \: of \: area \: of \: spheres \:  =  \frac{4\pi {r1}^{2} }{4\pi {r2}^{2} }  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{ {r1}^{2} }{ {r2}^{2} }  =  {( \frac{r1}{r2} )}^{2}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  {( \frac{3}{2} )}^{2}  =  \frac{9}{4}  \\  \\  \\  \\ hope \: it \: helps \: you
Similar questions