Math, asked by jforjazz4361, 10 months ago

The shadow of Qutab Minar is 81 m long when the angle of elevation of the Sun is θ. Find the height of the Qutab Minar if tanθ= 0.89.

Answers

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Height\:of\:Qutab\:minar=72.09\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}}   \\  \tt:  { \implies Shadow\:of\:Qutab\:minar=81\:m}\\\\ \tt:\implies Angle\:of\:elevation=\theta\\\\ \tt:\implies tan\:\theta=0.89 \\ \\ \red{\underline \bold{To \: Find:}} \\  \tt:  {\implies Height \: of \: Qutab\:minar= ?}

• According to given question :

 \circ \:  \tt{Let \: Height\: of \: Qutab \:minar \:   be\: h } \\  \\  \bold{As \: we \: know \: that} \\  \tt: {\implies tan \:  \theta=  \frac{Perpendicular}{Base}  }\\  \\  \tt:{  \implies 0.89 =  \frac{h}{81}}\\\\ \tt:{\implies 0.89\times 81=h }

 \tt: { \implies  72.09  = h }\\ \\ \green{\tt:  \implies  h =  72.09\:m} \\  \\   \green{\tt {\therefore Height \: of \: Qutab \: minar \:  is \:72.09 \:m}}

 \blue{ \bold{Some \: property \: of \: trigonometery}} \\   \orange{\tt {\circ \: sin  \: \alpha =  \frac{Perpendicular}{Hypotenuse}} } \\  \\   \orange{\tt{ \circ \: cos \: \alpha =  \frac{Base}{Hypotenuse}} } \\  \\    \orange{\tt{ \circ \: cot \: \alpha =  \frac{Base}{Hypotenuse}} } \\  \\   \orange{\tt {\circ \: cosec \:  \alpha  =  \frac{Hypotenuse}{Perpendicular} }} \\  \\ \orange{\tt {\circ \: sec \:  \alpha  =  \frac{Hypotenuse}{Base} }}

Answered by MarshmellowGirl
24

 \large \underline{ \blue{ \boxed{ \bf \green{Required \: Answer}}}}

Attachments:
Similar questions