Math, asked by digvijaysolanke8275, 1 year ago

The side of a triangle are in the ratio 13:14:15 and its perimeter is 84cm. Find the area of triangle sides.

Answers

Answered by ShreyaSingh31
97

\bf{\huge{\underline{\boxed{\sf{\blue{Answer:}}}}}}

\bf{\underline{\underline{\tt{\purple{Given:}}}}}

  • The sides of a triangle are in the ratio 13:14:15
  • Perimeter of the triangle is 84 cm

\bf{\underline{\underline{\tt{\purple{To\:find:}}}}}

  • Area of the triangle

\bf{\underline{\underline{\tt{\purple{Solution:}}}}}

Let x be the common multiple for the ratio of the sides of the triangle.

•°• First side = a = 13x

Second side = b = 14x

Third side = c = 15x

Using the formula for perimeter of a triangle, we can further solve the question and thereby derive the value of x.

\bf{\large{\underline{\boxed{\sf{\green{Perimeter\:of\:a\:triangle\:=\:a\:+\:b\:+\:c\:}}}}}}

Plug in the values,

=> 84 = 13x + 14x + 15x

=> 84 = 27x + 15x

=> 84 = 42x

=> \large\frac{84}{42} = x

=> x = 2

Substitute x = 2 in the values of the ratio of sides of the triangle.

\bf{\large{\underline{\boxed{\sf{\blue{First\:side\:=\:a=\:13x\:=\:13\times\:2=\:26\:cm}}}}}}

\bf{\large{\underline{\boxed{\sf{\blue{Second\:side\:=\:b=\:14x\:=\:14\times\:2=\:28\:cm}}}}}}

\bf{\large{\underline{\boxed{\sf{\blue{Third\:side\:=\:c=\:15x\:=\:1</p><p>5\times\:2=\:30\:cm}}}}}}

Now, to find the area of the triangle, we will use herons formula. For this we need to find the semiperimeter "s"

=> Semiperimeter,s = \large\frac{Perimeter}{2}

=> Semiperimeter,s = \large\frac{84}{2}

=> Semiperimeter, s = 42

Let's move to heron's formula,

=> Area = \sqrt{s(s-a) (s-b) (s-c)}

Substitute the appropriate values of s, a, b and c in the formula.

=\sqrt{42(42-26) (42-28) (42-30)}

= \sqrt{42(16) (14) (12)}

= \sqrt{42\times\:224\times\:12}

= \sqrt{42\times\:2688}

= \sqrt{112896}

=> Area = 336 sq.cm

\bf{\large{\underline{\boxed{\sf{\orange{Area\:of\:triangle\:=\:336\:cm^2}}}}}}

Answered by Anonymous
39

ANSWER:-

Given:

The sides of a triangle are in the ratio 13:14:15 & its perimeter is 84cm.

To find:

Find the area of triangle sides

Solution:

Let the number be x.

The sides of a ∆ are;

⚫A=13x

⚫B=14x

⚫C=15x

⚫Perimeter= 84cm

We know that, perimeter of triangle is;

=) side + side + side

=) 13x + 14x + 15x = 84

=) 42x= 84

=) x= 84/42

=) x= 2cm

So,

1st side, 13x = 13×2 = 26cm

2nd sise, 14x= 14×2 = 28cm

3rd side, 15x= 15× 2 = 30cm

Now,

We using Heron's Formula:

s =  \frac{a + b  + c}{2}  \\  \\  =  &gt;  \frac{26 + 28 + 30}{2}  \\  \\  =  &gt;  \frac{84}{2}  \\  \\  =  &gt; 42cm

Therefore,

Area of triangle:

A=  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  =  &gt;  \sqrt{42(42 - 26)(42 - 28)(42 - 30)}  \\  \\  =  &gt;  \sqrt{42(16)(14)(12)}  \\  \\  =  &gt;  \sqrt{2 \times 3 \times7 \times 2 \times 2 \times 2 \times 2 \times 2 \times 7 \times 2 \times 2 \times 3 }  \\  \\  =  &gt; 2 \times 2  \times 2 \times 2 \times 3 \times 7 \\  \\  =  &gt; 336 {cm}^{2}

Hence,

Area of ∆ is 336cm².

Hope it helps ☺️

Similar questions