Math, asked by harshikaniranja2007, 4 months ago

The sides of a rectangle are in the ratio 5 : 4 and its perimeter is 90 cm. What will be its length and breadth?

Answers

Answered by Itzraisingstar
60

\huge\fcolorbox{black}{lime}{AnsweR:}

Its length and breadth are 25 cm and 20 cm respectively.

\bold{ExplanatioN:}

The sides of a rectangle are in the ratio 5:4

Let the ratio be x

so, Length = 5x

Breadth = 4x

Perimeter of rectangle =

\bold{2(l+b)}\\\\\bold{2(5x+4x,)}\\\\\bold{2(9x)}

Now we are given that its perimeter is 90 cm

So, \bold{2(9x)=90,}\\\\\bold{18x=90,}\\\\\bold{x=\frac{90}{18} }\\\\\bold{x=5.}

So, Length = \bold{5x=5*5=25cm,}

Breadth = \bold{4x=4*5=20cm,}

Hence its length and breadth are 25 cm and 20 cm respectively.

\large\boxed{\mathfrak{30\:thanks+follow=inbox,}}

Answered by Champion55
15

Given :

⬤ Sides ot Rectangle are in the Ratio 5:4.

⬤ Perimeter of Rectangle is 90 cm.

To Find :

⬤ Length and Breadth of Rectangle .

Formula Used :

\bf[\:{Perimeter \: of \: Rectangle = 2(l+b)}\:]

Solution :

Let :

  • Length of Rectangle be 5x .
  • Breadth of Rectangle be 4x .

According to the Formula :-

90 = 2 (5x + 4x)

90 = 2 (9x)

90/2 = 9x

45 = 9x

45/9 = x

5 = x

Therefore , The Value of x is 5 .

Hence ,

Length of Rectangle = 5x

= 5(5)

= 25

Breadth of Rectangle = 4x

= 4(5)

= 20

Therefore , The Length of Rectangle is 25 cm and Breadth of Rectangle is 20 cm.

Similar questions