Math, asked by aryachourasia592, 4 months ago

The sides of a rectangular park are in the ratio 4 : 3 if it's area is 2028 sq. m, find the cost of fencing​

Answers

Answered by Anonymous
4

Correct Question:-

The sides of a rectangular park are in the ratio 4 : 3 if it's area is 2028 m², find the sides of the rectangular park.

Given:-

  • Area of rectangle = 2028 m²
  • Ratio of sides of rectangle = 4 : 3

To Find:-

  • Sides of rectangle

Solution:-

Put x in the ratio,

  • Length of rectangle = 4x
  • Breadth of rectangle = 3x

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\ \mathfrak{ \underline{ \green{Formula  \: to \:  calculate \:  the \:  area \:  of  \: rectangle}}}

 \underline {\boxed{ \mathfrak{ \star \:  \:  \:  \: { \red{ \large{area = length \times breadth}}}}}}

According to question,

\large{ \sf \longmapsto  \:  \:  \:  \:  \:  \:  \:  \:  \: \:4x \times 3x = 2028}

\large{ \sf \longmapsto  \:  \:  \:  \:  \:  \:  \:  \:  \: \:12 {x}^{2}  = 2028}

\large{ \sf \longmapsto  \:  \:  \:  \:  \:  \:  \:  \:  \: \: {x}^{2}  =  \frac{2028}{12}}  \\

\large{ \sf \longmapsto  \:  \:  \:  \:  \:  \:  \:  \:  \: \: {x}^{2}  = 169}

\large{ \sf \longmapsto  \:  \:  \:  \:  \:  \:  \:  \:  \: \:x =  \sqrt{169} }

\large{ \sf \longmapsto  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{ \boxed{ \mathfrak{ \purple{x = 13}}}}}

Now,

  • Length of rectangle = 4x = 52 cm
  • Breadth of rectangle = 3x = 39 cm

Hence:-

  • The sides of rectangular park are 52 cm and 39 cm.

Similar questions