Math, asked by negimayank679, 17 days ago

The solution of the inequality |x - 1| < 2is​

Answers

Answered by anindyaadhikari13
2

Solution:

Given Inequality:

 \rm \longrightarrow |x - 1|  &lt; 2

There are two possible cases:

 \rm 1.  \: \:  x - 1 &lt; 2 \:  \:  iff  \: \: x - 1 &gt; 0

 \rm 2.  \: \:   - (x - 1) &lt; 2 \:  \:  iff  \: \: x - 1 &lt; 0

Solving (i), we get:

 \rm \longrightarrow x - 1 &lt; 2

 \rm \longrightarrow x - 1 + 1&lt; 2 + 1

 \rm \longrightarrow x &lt; 3

Solving (ii), we get:

 \rm \longrightarrow  - (x - 1) &lt; 2

 \rm \longrightarrow x - 1 &gt;  -2

 \rm \longrightarrow x &gt;  -1

Combining both, we get:

 \rm \longrightarrow -1 &lt; x &lt; 3

 \rm \longrightarrow x \in ( - 1,3)

★ Which is our required answer.

Answer:

 \rm \hookrightarrow x \in ( - 1,3)

Note:

Absolute function is defined as:

 \rm \longrightarrow |x| = \begin{cases} \rm x \:  \: iff \:  \: x  \geqslant 0 \\  \rm  - x \:  \: iff \:  \: x &lt; 0 \end{cases}

Similar questions