Physics, asked by mjedhva4596, 11 months ago

The speed of sound in hydrogen at 0°C is 1280 m s−1. The density of hydrogen at STP is 0.089 kg m−3. Calculate the molar heat capacities Cp and Cv of hydrogen.

Answers

Answered by shilpa85475
1

The speed of sound in hydrogen at 0°C is 1280 m s−1. The density of hydrogen at STP is 0.089 kg m−3, The molar heat capacities Cp and Cv of hydrogen is 26.3 / m o l-K

Explanation:

Step 1:

Given data,

Sound velocity, in hydrogen, V=1280 \mathrm{m} / \mathrm{s}

T=0^{\circ} \mathrm{C}=273 \mathrm{K}

\mathrm{H}_{2}  Density = 0.089 \mathrm{kg} / \mathrm{m}^{3}

R=8.3 \mathrm{J} / \mathrm{mol}-\mathrm{K}

At STP,

P=10^{5} \mathrm{Pa}

Step 2:

We know that

V_{s o u n d}=\sqrt{\frac{\gamma p}{\rho}}

1280=\sqrt{\frac{\gamma \times 10^{5}}{0.089}}

1280 \times 1280=\frac{\gamma \times 10^{5}}{0.089}

1280 \times 1280 \times 0.089=\gamma \times 10^{5}

\frac{1280 \times 1280 \times 0.089}{10^{5}}=\gamma

\gamma=1.46

Step 3:

\frac{C_{p}}{C_{v}}=\gamma \text { or } C_{p}-C_{v}=R

C_{v}=\frac{R}{\gamma-1}=\frac{8.3}{1.46-1}=\frac{18.0 \mathrm{J}}{\mathrm{mol}}-\mathrm{K}

C_{p}=\gamma C_{v}=1.46 \times 18.0=26.28 \approx 26.3 / \mathrm{mol}-K

Similar questions