Math, asked by dineshkarthikthulasi, 11 months ago


The standard deviation of 20 observations is v6. If each observation is multiplied by3, find
the standard deviation and variance of the resulting observations.​

Answers

Answered by Alcaa
3

Answer:

Standard Deviation = 18

Variance = 324 .

Step-by-step explanation:

We are given that standard deviation of 20 observations is 6. If each observation is multiplied by 3 then standard deviation also get multiplied by 3.

To prove this let us consider a simple example;

Suppose;

              X                         X - Xbar                (X - Xbar)^{2}

              3                          3 - 6 = -3                      9

              5                          5 - 6 = -1                       1

              10                        10 - 6 = 4                      16

Mean of above data, Xbar = \frac{\sum X_i}{n} = \frac{3+5+10}{3} = 6

Standard Deviation of above data, s = \sqrt{\frac{\sum (X-Xbar)^{2} }{n-1}} = \sqrt{\frac{26}{3-1}} = \sqrt{13} .

Now, suppose each entry in above example is multiplied by 2;

        New X                 New (X - Xbar)           New (X - Xbar)^{2}

            6                        6 - 12 = -6                           36

           10                       10 - 12 = -2                            4

           20                      20 - 12 = 8                           64

Mean of above data = \frac{6+10+20}{3} = 12

Standard Deviation of above data, s = \sqrt{\frac{104}{3-1}} = 2\sqrt{13} .

This shows that when multiplying each observation by 2 the standard deviation also gets multiplied by 2.

Therefore, for our question when each observation is multiplied by 3 the standard deviation = 6 * 3 = 18   and

Variance = (Standard Deviation)^{2} = 18^{2} = 324 .

Similar questions