Math, asked by NainaMehra, 1 year ago

The sum of first q terms of an AP is ( 63q - 3q^2 ). If its pth term is -60, find the value of p. Also, find the 11th term of its AP.

Answers

Answered by Anonymous
73
\underline{\underline{\large{\mathfrak{Solution : }}}}



\underline{\textsf{Given : }} \\ \\<br /><br />\mathsf{\implies S_{q} \: = \: 63q \: - \: 3q^{2}} \\ \\<br /><br />\mathsf{\implies T_{p} \: = \: -60} \\ \\<br /><br />\underline{\textsf{Let,} }\\ \\<br /><br />\mathsf{\implies First \: term \: = \: a } \\ \\<br /><br />\mathsf{\implies Common \: difference \: = \: d } \\ \\<br /><br />\underline{\textsf{To Find : }} \\ \\<br /><br />\mathsf{\implies p \: = \: ?} \\ \\<br /><br />\mathsf{\implies T_{11} \: = \: ?}



 \underline{\textsf{We know that : } }\\ \\<br /><br />\mathsf{\implies S_{n} \: - \: S_{n \: - \: 1} \: = \: T_{n}}



\underline{\textsf{Now : }} \\ \\<br /><br />\mathsf{\implies S_{q} \: - \: S_{q \: - \: 1} \: = \: T_{q}} \\ \\<br /><br />\mathsf{\implies ( 63q \: - \: 3q^{2}) \: - \: \{ 63(q \: - \: 1) \: - \: 3(q \: - \: 1)^{2} \} \: = \: T_{q} } \\ \\ \mathsf{ \implies63q \: - \: 3 {q}^{2} \: - \: \{63q \: - \: 63 \: - \: 3( {q}^{2} \: + \: 1 \: - \: 2q) \} \: = \: T_{q}} \\ \\ \mathsf{ \implies63q \: - \: 3 {q}^{2} \: - \: \{ 63q \: - \: 63 \: - \: 3 {q}^{2} \: - \: 3 \: + \: 6q \} \: = \: T_{q}} \\ \\ \mathsf{ \implies63q \: - \: 3 {q}^{2} \: - \: \{ 63q \: - \: 66\: - \: 3 {q}^{2} + \: 6q \} \: = \: T_{q}} \\ \\ \mathsf{ \implies \cancel{63q} \: - \: \cancel{3 {q}^{2}} \: - \: \cancel{ 63q} \: + \: 66\: + \: \cancel{3 {q}^{2} } \: - \: 6q \: = \: T_{q}} \\ \\ \mathsf{ \therefore \quad \: T_{q} \: = \: 66 \: - \: 6q}



\underline{\textsf{Using Formula : }} \\ \\<br /><br />\boxed{\mathsf{\implies T_{n} \: = \: a \: + \: ( n \: - \: 1)d}}



\mathsf{\implies T_{q} \: = \: a \: + \: (q \: - \: 1)d} \\ \\<br /><br />\mathsf{\implies 66 \: - \: 6q \: = \: a \: + \: ( q \: - \: 1)d } \\ \\<br /><br />\textsf{When , q = 1 : } \\ \\<br /><br />\mathsf{\implies 66 \: - \: 6 \: \times \: 1 \: = \: a \: + \: ( 1 \: - \: 1)d } \\ \\<br /><br />\mathsf{\implies 66 \: - \: 6 \: = \: a \: + \: 0 \: \times \: d } \\ \\<br /><br />\mathsf{\implies 60 \: = \: a } \\ \\<br /><br />\mathsf{\therefore \: \quad a \: = \: 60 \qquad...(1)}



<br /><br />\textsf{When , q = 2 : } \\ \\<br /><br />\mathsf{\implies 66 \: - \: 6 \: \times \:2 \: = \: a \: + \: ( 2 \: - \: 1)d } \\ \\<br /><br />\mathsf{\implies 66 \: - \: 12 \: = \: a \: + \: 1\: \times \: d } \\ \\<br /><br />\mathsf{\implies 54 \: = \: a \: + \: d} \\ \\<br /><br />\mathsf{\therefore \quad \: a \: + \: d \: = \: 54 \qquad...(2)}




\textsf{Subtract eq.(1) from eq.(2) : } \\ \\<br /><br />\mathsf{\implies \cancel{a }\: + \: d \: - \: \cancel{a} \: = \: 54 \: - \: 60} \\ \\<br /><br />\mathsf{\therefore \quad \: d \: = \: -6}



\underline{\mathsf{To \: Find \longrightarrow Value \: of \: p \: : }} \\ \\ \\ \underline{\textsf{Using Formula : }} \\ \\<br /><br />\boxed{\mathsf{\implies T_{n} \: = \: a \: + \: ( n \: - \: 1)d}}



\mathsf{\implies T_{p} \: = \: 60 \: + \: (p \: - \: 1)(-6)} \\ \\<br /><br />\mathsf{\implies -60 \: = \: 60 \: + \: ( p \: - \: 1)(-6)} \\ \\<br /><br />\mathsf{\implies -60 \: - \: 60 \: = \: (p \: - \: 1)(-6)} \\ \\<br /><br />\mathsf{\implies -120 \: = \: (p \: - \: 1)(-6)} \\ \\<br /><br />\mathsf{\implies \dfrac{-120}{-6} \: = \: (p \: - \: 1)} \\ \\<br /><br />\mathsf{\implies 20 \: = \: p \: - \: 1} \\ \\<br /><br />\mathsf{\implies 20 \: + \: 1 \: = \: p } \\ \\<br /><br />\mathsf{\therefore \quad \: p \: = \: 21}




\underline{\mathsf{To \: Find \longrightarrow 11th \: term : }}

\mathsf{\implies T_{n} \: = \: a \: + \: (n \: - \: 1)d} \\ \\ \mathsf{\implies T_{11} \: = \:60 \: + \: ( 11 \: - \: 1)( - 6)} \\ \\<br /><br />\mathsf{\implies T_{11} \: = \: 60 \: + \: 10(-6)} \\ \\<br /><br />\mathsf{\implies T_{11} \: = \: 60 \: - \: 60 } \\ \\<br /><br />\mathsf{\therefore \quad \: T_{11} \: = \: 0}<br />




\boxed{\mathsf{Hence \: , \: p \: = \: 21 \: and \: T_{11} \: = \: 0 .}}<br />

Anonymous: Thanks guys !
Anonymous: Marvellous Answer brother :)
GhaintKudi45: Gr8 ans! Vaibhav
Anonymous: Thanks @Sujeetkumarray , @ankita789 and @khushiSolanki dii
GhaintKudi45: Mention not :)
sakshi574: #wow #gr8
GalacticCluster: as expected....xD
Answered by Anonymous
83

HEY THERE!!





Question:-



The sum of first q terms of an AP is ( 63q - 3q2 ). If its pth term is -60, find the value of p. Also, find the 11th term of its Arithmetic Progression.




Method of Solution;-




Let to be first term of Arithmetic Sequence or Progression= "a'



And,



Let to be common Difference of Arithmetic Sequence or Progression="d"



Let Sq denotes the sum of the first qth term of the Arithmetic Sequence or Progression.




Thus,




Sq=63q-3q² (Given)



•°• Sq-1 =63(q-1)-3(q-1)²



            = 63q-63-3(q²-2q+1)



          = -3q²+69q-66



According to the formula of Tn =Sn - Sn-1



Here's, Tn is Equal to Tq.




Tq=Sq-Sq-1




  = (63q-3q²)-(-3q²+69q-66)



 = 63q-3q²+3q²-69q+66




 = -6q+66




Now, According to the Question as per as follows of terms;-



Tp=-60 (Given)



From Equation (1)



Tp= -6p+66



-60=-6p+66




-60-66=-6p



-126=-6p



126=6p



•°• P=126/6



      = 21



Hence, Pth term of Arithmetic Sequence or Progression= 21



Again, According to the Question statement;


==================================


*the 11th term of its Arithmetic Sequence or Progression*



Substitute the value of q in Equation (-6q+66=-60)



Tq=-6q+66




 T11 => -6(11)+66




T11=> -66+66



 T11=> 0




Hence, Value of T11= 0





Conclusion :-



Value of P of this Arithmetic Sequence or Progression = 21



11th term of its Arithmetic Sequence or Progression= 0




Thanks!



Harsha889: Nyc ans
Anonymous: Thank you @kajal9650 and @Harsha889
Harsha889: ^_^
GalacticCluster: nice!
Anonymous: Thank you jenny
GalacticCluster: ☺☺
Similar questions