the sum of from consecutive number in an AP is 32 and the ratio of the product of the first and the last term of the products of two middle term is 7:15 find the num
Answers
Answered by
1
The answer is given below :
Let, the four consecutive numbers are
(a - 3d), (a - d), (a + d) and (a + 3d).
Given that,
(a - 3d) + (a - d) + (a + d) + (a + 3d) = 32
=> 4a = 32
=> a = 8
So, the numbers are
(8 - 3d), (8 - d), (8 + d) and (8 + 3d).
Given that :
(8 - 3d)(8 + 3d) : (8 - d)(8 + d) = 7 : 15
=> (64 - 9d²) : (64 - d²) = 7 : 15
=> (64 - 9d²)/(64 - d²) = 7/15
=> 960 - 135d² = 448 - 7d²
=> 128d² = 512
=> d² = 4
So, d = ± 2.
So, the numbers are :
2, 6, 10, 14
or,
14, 10, 6, 2.
Therefore, the four consecutive numbers are
2, 6, 10, 14.
Thank you for your question.
Let, the four consecutive numbers are
(a - 3d), (a - d), (a + d) and (a + 3d).
Given that,
(a - 3d) + (a - d) + (a + d) + (a + 3d) = 32
=> 4a = 32
=> a = 8
So, the numbers are
(8 - 3d), (8 - d), (8 + d) and (8 + 3d).
Given that :
(8 - 3d)(8 + 3d) : (8 - d)(8 + d) = 7 : 15
=> (64 - 9d²) : (64 - d²) = 7 : 15
=> (64 - 9d²)/(64 - d²) = 7/15
=> 960 - 135d² = 448 - 7d²
=> 128d² = 512
=> d² = 4
So, d = ± 2.
So, the numbers are :
2, 6, 10, 14
or,
14, 10, 6, 2.
Therefore, the four consecutive numbers are
2, 6, 10, 14.
Thank you for your question.
Similar questions