Math, asked by krishnamathur551, 4 days ago

the sum of n terms of an ap. is 3nsquarw +5n Find the ap hence find its 16th term

Answers

Answered by mathdude500
5

Appropriate Question :-

If the sum of n terms of an AP series is 3n² + 5n. Find the AP and hence find its 16th term.

\large\underline{\sf{Solution-}}

Given that, Sum of n terms of an AP is

\rm \: S_n =  {3n}^{2} + 5n \\

Let assume that

First term of an AP = a

Common difference of an AP = d

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

So, on substituting this value, we get

\rm \: \dfrac{n}{2} \bigg(2a + (n - 1)d \bigg)  =  {3n}^{2} + 5n \\

\rm \: \dfrac{n}{2} \bigg(2a + (n - 1)d \bigg)  = n(3n + 5) \\

\rm \: \dfrac{1}{2} \bigg(2a + (n - 1)d \bigg)  = 3n + 5 \\

\rm \: \rm \: 2a + nd - d = 6n + 10 \\

\rm \: \rm \: (2a - d) + nd = 6n + 10 \\

So, on comparing we get

\rm \: d = 6 \\

and

\rm \: 2a - d = 10 \\

\rm \: 2a - 6 = 10 \\

\rm \: 2a = 10 + 6 \\

\rm \: 2a = 16 \\

\rm\implies \:a = 8 \\

So, required AP series is 8, 14, 20, 26, ...

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

\rm \: a_{16} \\

\rm \:  =  \: a + (16 - 1)d \\

\rm \:  =  \: a + 15d \\

\rm \:  =  \: 8 + 15 \times 6 \\

\rm \:  =  \: 8 + 90 \\

\rm \:  =  \: 98 \\

Hence,

\rm\implies \:\rm \: a_{16} \:  =  \: 98 \\

Similar questions