the sum of perimeter of a circle & square is K.where K is some constant.Prove that the sum of their areas is least when the side of square is double the radius of circle.
Raman786:
i need detail
Answers
Answered by
0
let side of square = a
radius of circle = r
perimeter of square = 4a
perimeter of circle = 2πr
sum = 4a+2πr = K
⇒4a = K-2πr
⇒a = (K-2πr)/4
area of square = a² = ((K-2πr)/4)² = (K-2πr)²/16
area of circle = πr²
sum of areas, S = πr² + (K-2πr)²/16
For minimum area,
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒ (proved)
radius of circle = r
perimeter of square = 4a
perimeter of circle = 2πr
sum = 4a+2πr = K
⇒4a = K-2πr
⇒a = (K-2πr)/4
area of square = a² = ((K-2πr)/4)² = (K-2πr)²/16
area of circle = πr²
sum of areas, S = πr² + (K-2πr)²/16
For minimum area,
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒ (proved)
Similar questions