Math, asked by nareshmong7286, 10 months ago

The sum of squares of two consecutive odd no. Is 394.Find the numbers.

Answers

Answered by TheVenomGirl
2

AnSwer:

  • Let 1st no. be x and 2nd no. be x + 2

Here,

According to the question,

: \implies \sf \:  \:  \: {x}^{2} + { (x + 2) }^{2}  = 394 \\ \\  \\ : \implies \sf \:  \:  \: {x}^{2}  +  {x}^{2}  + 4x + 4 = 394 \\ \\  \\ : \implies \sf \:  \:  \:2 {x}^{2} + 4x = 394 - 4 \\ \\  \\  : \implies \sf \:  \:  \:2 {x}^{2} + 4x = 390 \\  \\ \\  : \implies \sf \:  \:  \:2 {x}^{2}  + 4x - 390 = 0 \\ \\  \\ : \implies \sf \:  \:   \:  {x}^{2}  + 2x - 195 = 0 ....(dividing \: by \: 2) \\ \\  \\ : \implies \sf \:  \:  \: {x}^{2}  + 15x - 13x - 195 = 0...(taking \: factors) \\ \\  \\ : \implies \sf \:  \:  \:x(x + 15) - 13(x + 15) = 0 \\ \\  \\ : \implies \sf \:  \:  \:(x - 13)(x + 15) = 0 \\ \\ \\ : \implies \sf \:  \:  \:x = 13 \: or \: x =  - 15

Here as x can't be odd no. so,

 \implies   {\underline{ \boxed{ \sf{ \purple{\:x = 13}}}}}

Now,

  \\ \sf \: 2nd  \: no.  \: is :- \\ \\  \\  : \implies \sf \:  \:  \: x + 2 \\ \\  \\ : \implies \sf \:  \:  \:13 + 2 \\ \\  \\ : \implies \:  \:   {\underline{ \boxed{ \sf{ \purple{\:15}}}}}

Therefore, the 2 numbers are 13 and 15.

Answered by InfiniteSoul
7

\sf{\underline{\huge{\boxed{\purple{\mathfrak{Question}}}}}}

  • The sum of squares of two consecutive odd no. Is 394.Find the numbers

\sf{\underline{\huge{\boxed{\purple{\mathfrak{Solution}}}}}} \\

  • let the no. be x and x + 2

\\ \sf\longrightarrow x ^2 + ( x + 2)^2 = 394 \\

\\ \sf{\bold{\red{\boxed{(a + b)^2 = a^2 + b^2 + 2ab }}}} \\ \\

\\ \sf\longrightarrow x^2 + x^2 + 4 + 4x = 394 \\

\\ \sf\longrightarrow 2x^2 + 4 + 4x - 394 = 0 \\

\\ \sf\longrightarrow 2x^2 + 4x - 390 = 0 \\

  • taking u as common

\\ \sf\longrightarrow 2( x^2 + 2x  - 195) = 0  \\

\\ \sf\longrightarrow x^2 + 2x  - 195 = 0 \\

\\ \sf\longrightarrow x^2 +15x - 13x  - 195 = 0 \\

\\ \sf\longrightarrow x ( x + 15 ) - 13 ( x + 15 ) = 0 \\

\\ \sf\longrightarrow ( x + 15 ) ( x - 13 ) = 0 \\\\

⠀⠀\begin{tabular}{|c|c|}\cline{1-2}\sf x + 15 = 0  &\sf x - 13 = 0 \\\cline{1-2}\sf x = 0 - 15 &\sf x = 0 + 13 \\\cline{1-2}\sf x = - 15 &\sf x = 13 \\\cline{1-2}\end{tabular}

  • no. cannot be negative therefore x = 13

\sf{\underline{\boxed{\pink{\mathfrak{first \: no. = 13  }}}}}

\\ \sf\longrightarrow x + 2 \\

\\ \sf\longrightarrow 13 + 2 \\

\\ \sf\longrightarrow 15\\\\

\\  \sf{\underline{\boxed{\pink{\mathfrak{second\: no. = \: 15  }}}}}\\\\

Therefore two consecutive numbers are \sf{\underline{\boxed{\pink{\mathfrak{13 }}}}} and \sf{\underline{\boxed{\pink{\mathfrak{15 }}}}}

__________________❤

Similar questions