the sum of the digits of a two digit number is 5. If the digits are reversed, the number is reduced by 27. Find the number.
Answers
Answered by
252
Let the digits be x and y respectively.
Therefore, x + y = 5 ----------- (1)
Original Number : 10x + y
Reversed Number : 10y + x
10x + y - (10y + x) = 27
10x + y - 10y - x = 27
9x - 9y = 27
9 (x - y) = 27
x - y = 3 ------------ (2)
Adding equation (1) and (2)
2x = 8
x = 4
Substituting value for x in equation (1), we get
4 + y = 5
y = 1
The numbers are 41 and 14.
Therefore, x + y = 5 ----------- (1)
Original Number : 10x + y
Reversed Number : 10y + x
10x + y - (10y + x) = 27
10x + y - 10y - x = 27
9x - 9y = 27
9 (x - y) = 27
x - y = 3 ------------ (2)
Adding equation (1) and (2)
2x = 8
x = 4
Substituting value for x in equation (1), we get
4 + y = 5
y = 1
The numbers are 41 and 14.
joshinrexy22:
If it was useful please mark as best!!!!
Answered by
103
Let the digits be x and y respectively.
Therefore, x + y = 5 ----------- (1)
Original Number : 10x + y
Reversed Number : 10y + x
10x + y - (10y + x) = 27
10x + y - 10y - x = 27
9x - 9y = 27
9 (x - y) = 27
x - y = 3 ------------ (2)
Adding equation (1) and (2)
2x = 8
x = 4
Substituting value for x in equation (1), we get
4 + y = 5
y = 1
The numbers are 41 and 14
Therefore, x + y = 5 ----------- (1)
Original Number : 10x + y
Reversed Number : 10y + x
10x + y - (10y + x) = 27
10x + y - 10y - x = 27
9x - 9y = 27
9 (x - y) = 27
x - y = 3 ------------ (2)
Adding equation (1) and (2)
2x = 8
x = 4
Substituting value for x in equation (1), we get
4 + y = 5
y = 1
The numbers are 41 and 14
Similar questions