Math, asked by thoisana9034, 1 year ago

The sum of two digit number is 10 and sum of reciprocal of each digit is 10÷21

Answers

Answered by ishwarsinghdhaliwal
0
Let the one number be x
and the other number be y
x+y =10
x= 10-y ....(1)
According to the question
 \frac{1}{x}  +  \frac{1}{y}  =  \frac{10}{21}  \\  \frac{y + x}{xy} =  \frac{10}{21} \\ 21y + 21x = 10xy \\ 21x + 21y = 10xy \\ 21(x + y) = 10xy  \\ 21(10) = 10(10 - y)( y) \:  \:  \: [from \: equation \: (1) ] \\ 210 =  100y  - 10 {y}^{2}  \\ 21 =   10y  -   {y}^{2}  \\  {y}^{2}  - 10y + 21 = 0 \\  {y}^{2}  - 7y - 3y + 21 = 0 \\ y(y - 7) - 3(y -7 ) = 0 \\ (y - 3)(y  - 7) = 0 \\ y = 3 \: or \: 7 \\we \: know  \: that \: \:  x + y = 10 \\when \: y   = 3 ,  \:  \: x = 7 \\ when \: y = 7 , \:  \: x = 3 \\ thus , \: the \: two \: numbers \: are \:  \: 3 \: and \: 7
Similar questions