Math, asked by kjha6062, 3 months ago

the value of 25³-75³+50³+3into 25 into 75 into 50 is​

Answers

Answered by DakshBajaj
0

Answer:

This is the correct answer

Step-by-step explanation:

26,367,468,750


kjha6062: its not correct
Answered by grithachinnu86
0

First solution:

We are given that:

a+b+c=0…(1)a+b+c=0…(1)

Hence, by (1)(1), we take:

Now, we have:

a2/bc+b2/ca+c2/ab=(a3+b3+c3)/(abc)…(2)a2/bc+b2/ca+c2/ab=(a3+b3+c3)/(abc)…(2)

By the famous Euler’s indentity and by (1)(1), we have:

a3+b3+c3−3abc=(1/2)(a+b+c)[(a−b)2+(b−c)2+(a−c)2]=>a3+b3+c3−3abc=(1/2)(a+b+c)[(a−b)2+(b−c)2+(a−c)2]=>

a3+b3+c3−3abc=0=>a3+b3+c3=3abc…(3)a3+b3+c3−3abc=0=>a3+b3+c3=3abc…(3)

Finally, by (2)(2) and (3)(3) we obtain:

a2/bc+b2/ca+c2/ab=3(abc)/(abc)=3a2/bc+b2/ca+c2/ab=3(abc)

We are given that:

a+b+c=0…(1)a+b+c=0…(1)

Hence, by (1)(1), we take:

Now, we have:

a2/bc+b2/ca+c2/ab=(a3+b3+c3)/(abc)…(2)a2/bc+b2/ca+c2/ab=(a3+b3+c3)/(abc)…(2)

By the famous Euler’s indentity and by (1)(1), we have:

a3+b3+c3−3abc=(1/2)(a+b+c)[(a−b)2+(b−c)2+(a−c)2]=>a3+b3+c3−3abc=(1/2)(a+b+c)[(a−b)2+(b−c)2+(a−c)2]=>

a3+b3+c3−3abc=0=>a3+b3+c3=3abc…(3)a3+b3+c3−3abc=0=>a3+b3+c3=3abc…(3)

Finally, by (2)(2) and (3)(3) we obtain:

a2/bc+b2/ca+c2/ab=3(abc)/(abc)=3a2/bc+b2/ca+c2/ab=3(abc)/(abc)=3

Similar questions