the value of 25³-75³+50³+3into 25 into 75 into 50 is
Answers
Answer:
This is the correct answer
Step-by-step explanation:
26,367,468,750
First solution:
We are given that:
a+b+c=0…(1)a+b+c=0…(1)
Hence, by (1)(1), we take:
Now, we have:
a2/bc+b2/ca+c2/ab=(a3+b3+c3)/(abc)…(2)a2/bc+b2/ca+c2/ab=(a3+b3+c3)/(abc)…(2)
By the famous Euler’s indentity and by (1)(1), we have:
a3+b3+c3−3abc=(1/2)(a+b+c)[(a−b)2+(b−c)2+(a−c)2]=>a3+b3+c3−3abc=(1/2)(a+b+c)[(a−b)2+(b−c)2+(a−c)2]=>
a3+b3+c3−3abc=0=>a3+b3+c3=3abc…(3)a3+b3+c3−3abc=0=>a3+b3+c3=3abc…(3)
Finally, by (2)(2) and (3)(3) we obtain:
a2/bc+b2/ca+c2/ab=3(abc)/(abc)=3a2/bc+b2/ca+c2/ab=3(abc)
We are given that:
a+b+c=0…(1)a+b+c=0…(1)
Hence, by (1)(1), we take:
Now, we have:
a2/bc+b2/ca+c2/ab=(a3+b3+c3)/(abc)…(2)a2/bc+b2/ca+c2/ab=(a3+b3+c3)/(abc)…(2)
By the famous Euler’s indentity and by (1)(1), we have:
a3+b3+c3−3abc=(1/2)(a+b+c)[(a−b)2+(b−c)2+(a−c)2]=>a3+b3+c3−3abc=(1/2)(a+b+c)[(a−b)2+(b−c)2+(a−c)2]=>
a3+b3+c3−3abc=0=>a3+b3+c3=3abc…(3)a3+b3+c3−3abc=0=>a3+b3+c3=3abc…(3)
Finally, by (2)(2) and (3)(3) we obtain:
a2/bc+b2/ca+c2/ab=3(abc)/(abc)=3a2/bc+b2/ca+c2/ab=3(abc)/(abc)=3