The value of a car depreciates 20% every year. if after two years, the price of a car is 420000, find the original price of a car
Answers
Answered by
8
original price is 268800
Answered by
33
If Vo is the value of an article at a certain time and R% per annum is the rate of depreciation, then the value Vn at the end of n years is given by
Vn = Vo (1-R/100)^n
Given :
R= 20%, n= 2years, Vn= ₹420000
Vn = Vo (1-R/100)^n
420000= Vo (1-20/100)²
420000= Vo (1-1/5)²
420000= Vo (4/5)²
42000= 16Vo/25
Vo= (420000 × 25)/16
Vo= 26250×25
Vo= ₹ 656250
Hence,the original price of a car is ₹ 656250.
==================================================================
Hope this will help you...
Vn = Vo (1-R/100)^n
Given :
R= 20%, n= 2years, Vn= ₹420000
Vn = Vo (1-R/100)^n
420000= Vo (1-20/100)²
420000= Vo (1-1/5)²
420000= Vo (4/5)²
42000= 16Vo/25
Vo= (420000 × 25)/16
Vo= 26250×25
Vo= ₹ 656250
Hence,the original price of a car is ₹ 656250.
==================================================================
Hope this will help you...
Similar questions