the value of cos(60+2A)÷cos 2A-√3 sin 2A
Answers
Answered by
0
Answer:
Step-by-step explanation:
The simplest way to proceed with such kind of problems is to go with the method of substitution
Here I am substituting A=0
cos0=1
sin0=0
cos60=1÷2
cos(60+2A)÷cos 2A-√3 sin 2A= 1÷2
Answered by
0
value of cos(60+2A)÷cos 2A-√3 sin 2A = 1/2
Step-by-step explanation:
cos(60+2A)÷ (cos 2A-√3 sin 2A)
Using Cos ( x + y) = CosxCosy - SinxSiny
cos(60+2A) = Cos60 Cos2A - Sin60Sin2A
Cos60 = 1/2
Sin60 = √3/2
=> cos(60+2A) = (1/2) Cos2A - (√3/2)Sin2A
=> cos(60+2A) = (cos 2A-√3 sin 2A) / 2
using this value
cos(60+2A)÷ (cos 2A-√3 sin 2A)
= ( (cos 2A-√3 sin 2A) / 2) ÷ (cos 2A-√3 sin 2A)
= 1/2
but cos 2A-√3 sin 2A ≠ 0
=> √3 sin 2A ≠ cos 2A
=> Tan2A ≠ 1/√3
=> 2A ≠ nπ + 30°
=> A ≠ nπ/2 + 15°
cos(60+2A)÷ (cos 2A-√3 sin 2A) = 1/2
Similar questions