Math, asked by chinnithAtikonda, 1 year ago

the value of log1 to the base 7

Answers

Answered by MaheswariS
18

\underline{\textsf{To find:}}

\textsf{The value of}

\mathsf{\log_{7}1}

\underline{\textsf{Solution:}}

\bf\mathsf{Concept:}

\boxed{\mathsf{a^x=N\;\iff\;\log_aN=x}}

\mathsf{Consider,}

\mathsf{Let\;\;\log_{7}1=x}

\implies\mathsf{7^x=1}

\implies\mathsf{7^x=7^0}

\mathsf{Equating\;powers\;on\;bothsides,\;we\;get}

\mathsf{x=0}

\implies\boxed{\mathsf{\log_{7}1=0}}

\underline{\textsf{Find more:}}

If log10 (3)=0.4771,find the value of log10(81)

https://brainly.in/question/25366253

Expand log 2020 and there is no base​

https://brainly.in/question/22075785

Answered by Tiasha585M
1

Answer:

To find:

\textsf{The value of}The value of

\mathsf{\log_{7}1}log

7

1

\underline{\textsf{Solution:}}

Solution:

\bf\mathsf{Concept:}Concept:

\boxed{\mathsf{a^x=N\;\iff\;\log_aN=x}}

a

x

=N⟺log

a

N=x

\mathsf{Consider,}Consider,

\mathsf{Let\;\;\log_{7}1=x}Letlog

7

1=x

\implies\mathsf{7^x=1}⟹7

x

=1

\implies\mathsf{7^x=7^0}⟹7

x

=7

0

\mathsf{x=0}x=0

\implies\boxed{\mathsf{\log_{7}1=0}}⟹

log

7

1=0

\underline{\textsf{Find more:}}

Similar questions