Math, asked by Mehul8362, 5 months ago

The value of machine depreciates
every year at the rate of 10% p.a. If
the present value of machine is Rs
6561. What was its value 3 year ago?​

Answers

Answered by viiic10anshika0211
1

Answer:

Rate = - 10% p.a. ( The rate is negative since the price is depriciating.)

Time = 3 years

Final price = Rs. 6561

To Find :

Initial price

Solution :

Let initial price = x

Now, We know that,

\underline{\boxed{\sf Final \: Price = Initial \: Price \Bigg( 1 + \dfrac{Rate}{100} \Bigg) ^{time}}}

FinalPrice=InitialPrice(1+

100

Rate

)

time

By putting values,

: \implies \sf Rs. \: 6561 = x \times \Bigg( 1 + \dfrac{- 10}{100} \Bigg) ^{3}:⟹Rs.6561=x×(1+

100

−10

)

3

: \implies \sf Rs. \: 6561 = x \times \Bigg( 1 - \dfrac{ 1\cancel{0}}{10\cancel{0}} \Bigg) ^{3}:⟹Rs.6561=x×(1−

10

0

1

0

)

3

: \implies \sf Rs. \: 6561 = x \times \Bigg( \dfrac{10}{10} - \dfrac{ 1}{10} \Bigg) ^{3}:⟹Rs.6561=x×(

10

10

10

1

)

3

: \implies \sf Rs. \: 6561 = x \times \Bigg( \dfrac{10 - 1}{10} \Bigg) ^{3}:⟹Rs.6561=x×(

10

10−1

)

3

: \implies \sf Rs. \: 6561 = x \times \Bigg( \dfrac{9}{10} \Bigg) ^{3}:⟹Rs.6561=x×(

10

9

)

3

: \implies \sf Rs. \: 6561 = x \times \dfrac{9}{10} \times \dfrac{9}{10} \times \dfrac{9}{10}:⟹Rs.6561=x×

10

9

×

10

9

×

10

9

: \implies \sf Rs. \: \cancel{6561}^{729} \times \dfrac{10}{\cancel{9}} \times \dfrac{10}{9} \times \dfrac{10}{9} = x:⟹Rs.

6561

729

×

9

10

×

9

10

×

9

10

=x

: \implies \sf Rs. \: \cancel{729}^{81} \times 10 \times \dfrac{10}{\cancel{9}} \times \dfrac{10}{9} = x:⟹Rs.

729

81

×10×

9

10

×

9

10

=x

: \implies \sf Rs. \: \cancel{81}^{9} \times 10 \times 10 \times \dfrac{10}{\cancel{9}} = x:⟹Rs.

81

9

×10×10×

9

10

=x

: \implies \sf Rs. \: 9 \times 10 \times 10 \times 10= x:⟹Rs.9×10×10×10=x

: \implies \sf Rs. \: 9000= x:⟹Rs.9000=x

: \implies \sf x = Rs. \: 9000:⟹x=Rs.9000

\large \underline{\boxed{\sf x = Rs. \: 9000}}

x=Rs.9000

So, the price of the machine 3 years ago = Rs. 9000.

Step-by-step explanation:

mark as brainlist

Similar questions