The value of
sin((n + 1)A] sin((n + 2)A] + cos((n + 1)A] cos((n + 2)A] is equal to
Answers
Answered by
1
Answer:
to prove:-
sin(n+1) x sin(n+2) x+
cos(n+1)xcos(n+2)x=cos x
proof:-
L.H.S
sin(n+1)x sin(n+2)x+
cos(n+1)x cos(n+2)x
= cos((n+2) x—(n-1)x)
= cos ((n+2-n-1)x) {•.• cos(A-B)=sinA sinB +cosA
cos B}
= cos x= R.H.S
HENCE.PROVED.....
Answered by
0
Answer:
Cos A
Step-by-step explanation:
Cos (X - Y) = Cos X Cos Y + Sin X Sin Y
here X = (n+2)A. Y = (n+1) A
Hence, sin((n + 1)A] sin((n + 2)A] + cos((n + 1)A] cos((n + 2)A] is equal to Cos [ (n+2)A - (n+2) A]
= Cos A
Similar questions