Math, asked by neelukhatik713, 11 months ago

the value of tan square 60 degree + sin square 45 degree is​

Answers

Answered by NehaKari
1

Given : tan^{2} 60° + sin^{2}45°

To Find : the value of the given problem

Solution :

tan^{2} 60 + sin^{2}45

= (\sqrt{3}) ^{2}  +(\frac{1}{\sqrt{2} } )^{2} ( tan60° = \sqrt{3} and sin45° = \frac{1}{\sqrt{2} } )

= 3 + \frac{1}{2}

= \frac{6 + 1}{2}

= \frac{7}{2} or 3.5 (Answer)

Answered by pulakmath007
5

\displaystyle \sf{  {tan}^{2}  {60}^{ \circ}  + {sin}^{2}  {45}^{ \circ}   =  \frac{7}{2} }

Given :

\displaystyle \sf{  {tan}^{2}  {60}^{ \circ}  + {sin}^{2}  {45}^{ \circ}   }

To find : The value

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{  {tan}^{2}  {60}^{ \circ}  + {sin}^{2}  {45}^{ \circ}  }

Step 2 of 2 :

Find the value of the expression

\displaystyle \sf{  {tan}^{2}  {60}^{ \circ}  + {sin}^{2}  {45}^{ \circ}  }

\displaystyle \sf{ =   {( \sqrt{3} )}^{2}  + {  \bigg(\frac{1}{ \sqrt{2} } \bigg) }^{2}  }

\displaystyle \sf{ =  3 +  \frac{1}{2}  }

\displaystyle \sf{ =   \frac{6 + 1}{2}  }

\displaystyle \sf{ =   \frac{7}{2}  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if x cos a=8 and 15cosec a=8sec a then the value of x is

a) 20 b)16 c)17 d)13

https://brainly.in/question/46325503

2. 7 cos 30° + 5 tan 30° + 6 cot 60° is

https://brainly.in/question/46167849

3. 1+ sin2α = 3 sinα cosα, then values of cot α are

https://brainly.in/question/46265791

Similar questions