Math, asked by raymanoj62, 11 months ago

the value of
 \sqrt{32}  +  \sqrt{48}  \div  \sqrt{8}  -  \sqrt{12}

Answers

Answered by jayjain07
45

Answer:

 \sqrt{32}  +  \sqrt{48}  \div  \sqrt{8}  -  \sqrt{12}

 = 4 \sqrt{2}  + 4 \sqrt{3}    \div  2 \sqrt{2}  - 2 \sqrt{3}

 =  \frac{4 \sqrt{2}  + 4 \sqrt{3} }{2 \sqrt{2}  - 2 \sqrt{3} }

 =  \frac{4( \sqrt{2}  +  \sqrt{3} )}{2( \sqrt{2}  -  \sqrt{3} }

 =  \frac{2( \sqrt{2}  +  \sqrt{3} )}{ \sqrt{2}  -  \sqrt{3} }  \times  \frac{ \sqrt{2}  +  \sqrt{3} }{ \sqrt{2} +  \sqrt{3}  }

 = 4 \sqrt{6}  - 10

Answered by rachita07
44

Answer:

 \sqrt{32}  +  \sqrt{48}  \div  \sqrt{8}  -  \sqrt{12}

 = 4 \sqrt{2}  + 4 \sqrt{3}    \div  2 \sqrt{2}  - 2 \sqrt{3}

 =  \frac{4 \sqrt{2}  + 4 \sqrt{3} }{2 \sqrt{2}  - 2 \sqrt{3} }

 =  \frac{4( \sqrt{2}  +  \sqrt{3} )}{2( \sqrt{2}  -  \sqrt{3} }

 =  \frac{2( \sqrt{2}  +  \sqrt{3} )}{ \sqrt{2}  -  \sqrt{3} }  \times  \frac{ \sqrt{2}  +  \sqrt{3} }{ \sqrt{2} +  \sqrt{3}  }

= -10 + 4√6

Similar questions