Math, asked by muthushri1720, 9 months ago

show that show that the points (1,7 ),(4,2) ,(-1,1), (-4,4) are vertices of a square​

Answers

Answered by ShírIey
183

CORRECT QUESTION

Show that the Points (1 , 7), (4, 2) ,(-1 , 1) and (-4, 4) are the vertices of a sqaure.

\rule{150}3

AnswEr

Let the Given Vertices be A (1, 7), B(4, 2), C(-1, 1) & D(-4, 4).

\bf{\large{\underline{\sf{\pink{Using \; Distance \; Formula}}}}}

:\implies\large\boxed{\sf{\blue{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}}}

\rule{150}3

\dag Finding the Distance of AB :-

:\implies\sf\sqrt{(4 - 1)^2 + (2 - 7)^2}

:\implies\sf\sqrt{9 + 25}

:\implies\large\boxed{\sf{\red{\sqrt{34}}}}

\dag Finding the Distance of BC :-

:\implies\sf\sqrt{(-1 - 4)^2 + (-1 - 1)^2}

:\implies\sf\sqrt{25 + 9}

:\implies\large\boxed{\sf{\red{\sqrt{34}}}}

\dag Finding the Distance of CD :-

:\implies\sf\sqrt{(-4 +1)^2 + ( 4 + )^2}

:\implies\sf\sqrt{9 + 25}

:\implies\large\boxed{\sf{\red{\sqrt{34}}}}

\dag Finding the Distance of DA :-

:\implies\sf\sqrt{(1 + 4)^2 + (7 - 4)^2}

:\implies\sf\sqrt{25 + 9}

:\implies\large\boxed{\sf{\red{\sqrt{34}}}}

\dag Finding the Distance of AC :-

:\implies\sf\sqrt{(-1 -1)^2 + ( -1 - 7)^2}

:\implies\sf\sqrt{4 + 64}

:\implies\large\boxed{\sf{\pink{\sqrt{68}}}}

\dag Finding the Distance of BD :-

:\implies\sf\sqrt{(-4 - 4)^2 + (4 - 2)^2}

:\implies\sf\sqrt{64 + 4}

:\implies\large\boxed{\sf{\pink{\sqrt{68}}}}

\rule{150}3

Here, We can see that

AC = BC = CD = DA & AC = BD

So, the Given points are the Vertices of a square.

\rule{150}3

Similar questions