The value of (x+3y)whole square +(x-3y)whole square is
Answers
Answered by
6
x^2 + 9y^2 + 6xy +(x^2 + 9y^2 - 6xy)
= x^2 + 9y^2 + 6xy + x^2 + 9y^2 - 6xy
= 2x^2 + 18y^2
= x^2 + 9y^2
Answered by
2
Step-by-step explanation:
(a+b)whole square ie. (a+b)2=
(a)square (a)2+(b)square (b)2+2×a×b-2(ab)
(a-b)whole square ie. (a-b)2=
b)2=(a)square (a)2+(b)square (b)2-2×a×b-2(ab)
Hence
(x+3y) whole2 = x2+9y2+6xy
(x-3y) whole2= x2+9y2-6xy
Therefore (x+3y)whole2+(x-3y)whole2= 2(x)square+18(y)square
ie. (x+3y)2+(x-3y)2= 2(x)2+18(y)2.
Similar questions