Chemistry, asked by BrainlyHelper, 1 year ago

The values of the van der Waal’s constants for a gas are a = 4.10 dm^{6} bar mol^{-2} and b = 0.035 dm^{3} mol^{-1}. Calculate the values of the critical temperature and critical pressure for the gas.

Answers

Answered by phillipinestest
3

i) Calculation of critical temperature = 4.16 d{ m }^{ 6 }bar.mo{ l }^{ -2 }

b = 0.035d{ m }^{ 3 }bar.mo{ l }^{ -1 }

R = 0.0821 d{ m }^{ 3 }bar.mo{ l }^{ -1 }{ K }^{ -1 }

Now, critical temperature, { T }_{ c }\quad =\quad \frac { 8a }{ 27Rb }

Substituting the values{ T }_{ c }=\frac { 8\times4.10 }{ 27\times0.0821\times 0.035 } =422.76K

ii) Calculation of critical pressure

{ P }_{ e }=\frac { a }{ 27{ b }^{ 2 } }

Substitute the values

= \frac { 4.10 }{ 27 \times 0.035 \times 0.035 } = 123.96 bar

Therefore, critical temperature is 422.76 K and critical pressure is 123.96 bar.

Answered by ROCKSTARgirl
0

i) Calculation of critical temperature = 4.16 d{ m }^{ 6 }bar.mo{ l }^{ -2 }4.16dm

6

bar.mol

−2

b = 0.035d{ m }^{ 3 }bar.mo{ l }^{ -1 }b=0.035dm

3

bar.mol

−1

R = 0.0821 d{ m }^{ 3 }bar.mo{ l }^{ -1 }{ K }^{ -1 }R=0.0821dm

3

bar.mol

−1

K

−1

Now, critical temperature, { T }_{ c }\quad =\quad \frac { 8a }{ 27Rb }T

c

=

27Rb

8a

Substituting the values{ T }_{ c }=\frac { 8\times4.10 }{ 27\times0.0821\times 0.035 } =422.76KT

c

=

27×0.0821×0.035

8×4.10

=422.76K

ii) Calculation of critical pressure

{ P }_{ e }=\frac { a }{ 27{ b }^{ 2 } }P

e

=

27b

2

a

Substitute the values

= \frac { 4.10 }{ 27 \times 0.035 \times 0.035 } = 123.96 bar=

27×0.035×0.035

4.10

=123.96bar

Therefore, critical temperature is 422.76 K and critical pressure is 123.96 bar.

Similar questions