Math, asked by ramkumarraj27, 9 months ago

the wnswer is 13.find the steps​

Attachments:

Answers

Answered by StarrySoul
11

Solution :

 \longrightarrow \sf \:  {( {2}^{2}) }^{0}  +   ({2})^{ - 4}   \div ( {2})^{ - 6}  + ( \dfrac{1}{2} ) ^{ - 3}

 \longrightarrow \sf \:  ({2})^{0}  +  (\dfrac{1}{2}) ^{4}  \div  (\dfrac{1}{2}) ^{6}  +  ({2})^{3}

 \longrightarrow \sf \:  1 +  \dfrac{1}{16}  \div   \dfrac{1}{64} + 8

 \longrightarrow \sf \:  1 +  \dfrac{1}{16}   \times 64 + 8

 \longrightarrow \sf \: 1 + 4 + 8

 \longrightarrow \sf \large  \boxed{ \purple{ \sf \: 13}}

Required Value is 13

More about Exponents :

If a,b are positive real numbers and m,n are rational numbers,then :

 \bullet \sf \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \bullet \sf \:  {a}^{m}    \div   {a}^{n}  =  {a}^{m  -  n}

 \bullet \sf \:   ({a}^{m} )^{n}  =  {a}^{mn}

 \bullet \sf \:    {a}^{ - n}  =  \dfrac{1}{ {a}^{n} }

 \bullet \sf \:    ( {ab})^{n}  =   {a}^{n}  {b}^{n}

 \bullet \sf \:    ( \dfrac{a}{b} ) ^{n}  =  \dfrac{ {a}^{n} }{ {b}^{n} }

 \bullet \sf\: {a}^{0} = 1

 \bullet \sf {a}^{-m} =( \dfrac{1}{a})^{m}

Answered by Anonymous
9

Solution :-

→( { {2}^{2}) }^{0}  +  {2}^{ - 4}  \div  {2}^{ - 6}  + ( { \frac{1}{2}) }^{ - 3} \\ →   ( {2 \times 2)}^{0}   + ( { \frac{1}{2}) }^{4}  \div ( { \frac{1}{2} )}^{6}  + ( {2)}^{3}  \\  →   ( {4)}^{0}  +  \frac{1}{2 \times 2 \times 2 \times 2}  \div  \frac{1}{2 \times 2 \times 2 \times 2 \times 2 \times 2}  + (2 \times 2 \times 2)

But -

  •  {x}^{0}  = 1

 </strong><strong>→</strong><strong> 1 +  \frac{1}{16}  \div  \frac{1}{64}  + </strong><strong>8</strong><strong> \\   \\  </strong><strong>→</strong><strong> 1 +  \frac{1}{16}  \times 64 + </strong><strong>8</strong><strong> \\  \\  </strong><strong>→</strong><strong>1 + 4 + </strong><strong>8</strong><strong> \\  \\  </strong><strong>→</strong><strong>1</strong><strong>3</strong><strong>

\rule{200}{1}

Be Brainly ◉‿◉

Similar questions