Theorem 1.5
Class 10
√3 is an irrational no prove
Answers
Solution:
Let us assume that, √3 is a rational number of simplest form , having no common factor other than 1.
∴√3 =
On squaring both sides, we get ;
3 =
⇒ a² = 3b²
Clearly, a² is divisible by 3.
So, a is also divisible by 3.
Now, let some integer be c.
⇒ a = 3c
Substituting for a, we get ;
⇒ 3b² = 3c
Squaring both sides,
⇒ 3b² = 9c²
⇒ b² = 3c²
This means that, 3 divides b², and so 2 divides b.
Therefore, a and b have at least 3 as a common factor. But this contradicts the fact that a and b have no common factor other than 1.
This contradiction has arises because of our assumption that √3 is rational.
So, we conclude that √3 is irrational.
Let us assume that √3 is a rational number.
then, as we know a rational number should be in the form of p/q
where p and q are co- prime number.
So,
√3 = p/q { where p and q are co- prime}
√3q = p
Now, by squaring both the side
we get,
(√3q)² = p²
3q² = p² ........ ( i )
So,
if 3 is the factor of p²
then, 3 is also a factor of p ..... ( ii )
=> Let p = 3m { where m is any integer }
squaring both sides
p² = (3m)²
p² = 9m²
putting the value of p² in equation ( i )
3q² = p²
3q² = 9m²
q² = 3m²
So,
if 3 is factor of q²
then, 3 is also factor of q
Since
3 is factor of p & q both
So, our assumption that p & q are co- prime is wrong
hence,. √3 is an irrational number