Math, asked by kaileshvj90678, 8 months ago

There are n arithmetic means between 9 and 27. If the ratio of the last mean to the first mean is 2:1, Find the value of n​

Answers

Answered by Anonymous
262

\huge{\tt{\underline{ GIVEN }}} \::

  • \Large\textsf{There are n arithmetic means between 9 and 27.}
  • \Large\textsf{The ratio of the last mean to the first mean is 2:1}

⠀⠀⠀

\huge{\tt{\underline{TO \ FIND}}} \::

  • \large\textsf{The value of n}

⠀⠀⠀

\huge{\tt{\underline{SOLUTION}}} \::

⠀⠀⠀

\large\Rightarrow\:\:\textsf{a + (n + 2 - 1) d = 27}

⠀⠀⠀

\large\Rightarrow\:\:\textsf{9 + (n + 1) d = 27}

⠀⠀⠀

\large\Rightarrow\:\:\textsf{(n + 1) d = 27 - 9}

⠀⠀⠀

\large\Rightarrow\:\:\textsf{(n + 1) d = 18}

⠀⠀⠀

\large\Rightarrow\:\:{\boxed{\sf{d = \dfrac{18}{n + 1}}}}

⠀⠀⠀

\large\star\:\:\sf{\dfrac{a_{n}}{a_{1}} = \dfrac{T_{n+1}}{T_{2}} = \dfrac{2}{1}}

⠀⠀⠀

\large\longrightarrow\:\:\sf{\dfrac{a + (n + \cancel{1 - 1}) d}{a + (2 - 1) d} = \dfrac{2}{1}}

⠀⠀⠀

\large\longrightarrow\:\:\sf{\dfrac{a + (n) d}{a + d} = \dfrac{2}{1}}

⠀⠀⠀

\large\longrightarrow\:\:\sf{\dfrac{9 + (n) \dfrac{18}{(n+1)}}{9 +  \dfrac{18}{(n+1)}} = \dfrac{2}{1}}

⠀⠀⠀

\large\longrightarrow\:\:\sf{\dfrac{\dfrac{9n + 9 + 18n}{(n + 1)}}{\dfrac{9n + 9 + 18}{(n + 1)}} = \dfrac{2}{1}}

⠀⠀⠀

\large\longrightarrow\:\:\sf{\dfrac{27n + 9}{9n + 27} = \dfrac{2}{1}}

⠀⠀⠀

\large\longrightarrow\:\:\sf{ 27n + 9 = 18n + 54}

⠀⠀⠀

\large\longrightarrow\:\:\sf{9n = 45}

⠀⠀⠀

\large\longrightarrow\:\:\sf{n = \dfrac{\cancel{45}{\Large{^{\:\:5}}}}{\cancel{9}{\Large{_{\:\:1}}} }  }

⠀⠀⠀

\large\longrightarrow\:\:\sf{n = 5}

Similar questions