Math, asked by apoorvans662gmailcom, 1 month ago

Thiis is a Question
 03. Find \:  a  \: and  \: b, If \frac{7 - 4 \sqrt{3} }{7 + 4 \sqrt{3} } =a+b√3

Answers

Answered by Anonymous
8

Answer

  • The value of a = 97 and b = -56.

Given

  •  \sf\cfrac{7 - 4 \sqrt{3} }{7 + 4 \sqrt{3} } =a+b \sqrt{3}

To Find

  • The value of a and b.

Step By Step Explanation

  • Step 1.
  • To rationalize the denominator.

First we need to rationalize the denominator. So let's do it !!

\longmapsto \sf\cfrac{7 - 4 \sqrt{3} }{7 + 4 \sqrt{3} } =a+b \sqrt{3}  \\  \\  \longmapsto \sf\cfrac{7 - 4 \sqrt{3} }{7 + 4 \sqrt{3} } \:  \:   \times  \:  \:  \cfrac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} } =a+b \sqrt{3}  \\   \\  \longmapsto \sf\cfrac{({7 - 4 \sqrt{3})}^{2} }{ {(7)}^{2}  -  {(4 \sqrt{3})}^{2}  } =a+b \sqrt{3}  \\  \\   \longmapsto \sf\cfrac{49 + 48 - 56 \sqrt{3} }{49 - 48}  = a + b \sqrt{3}  \\  \\  \longmapsto \sf 97 - 56 \sqrt{3}  = a + b \sqrt{3}

  • Step 2.
  • To find the value of a and b.

Now we need to find the value of a and b. So let's do it !!

\longmapsto\sf97 - 56 \sqrt{3}  = a + b \sqrt{3}

From here we conclude that

\longmapsto \sf \underline{ \boxed{ \bold{ \green{97 = a}}}} \:  \:  \: and \:  \:  \:    \underline{\boxed{\bold{ \pink{ - 56 = b}}}} \:  \:  \:  \:  \:  \:   \bigstar

Therefore, the value of a = 97 and b = -56.

_____________________________

Similar questions